# STELLOPT and REGCOIL Integration

John Schmitt
WISTELL Meeting
Madison, WI
2017-February-23

## Background about REGCOIL<sup>1,2</sup>, 1

• 'Regularized NESCOIL' (REGCOIL) finds the current potential,  $\Phi$ , on a winding surface such that the following function is minimized:

$$\chi^2 = \chi_B^2 + \lambda \chi_K^2$$

- Normal component of B on the *plasma surface*:  $\chi_B^2 = \int d^2a \ B_{normal}^2$
- Current density on the winding surface:  $\vec{K} = \hat{n} \times \nabla \Phi$
- Surface–average–squared current density  $K^2 = |\mathbf{K}|^2$  on the winding surface

$$\chi_K^2 = \int d^2a' K^2$$

- Inverse distance between coils (proxy):  $K = |\vec{K}|$
- Regularization parameter:  $\lambda$ 
  - Larger  $\lambda$  (more regularization) leads to less complicated current potential contours ('less harmonic content'), but  $\chi_B^2$  increases

<sup>&</sup>lt;sup>1</sup> M. Landreman, Nuclear Fusion **57**, 046003 (2017).

<sup>&</sup>lt;sup>2</sup> https://github.com/landreman/regcoil

## Background about REGCOIL, 2

- REGCOIL has several execution options.
- 'General option=5'
  - User specifies the plasma-coil separation distance, 'SEP'
  - User specifies a desired  $\chi_K^2$  (the 'target')
  - REGCOIL creates a winding surface and finds the current potential on that winding surface with the desired 'K' that minimizes  $\chi_B^2$
- Specify SEP and |K|, get back achieved  $\chi_B^2$  and  $\lambda$

## Background about STELLOPT<sup>1</sup>, 1

- Multi-dimensional non-linear curve fitting algorithm to optimize 3D MHD equilibria to a set of target physics parameters encompassing stellarator design and 3-D equilibrium reconstruction
- Modified Levenberg-Marquardt algorithm
- Genetic algorithm
- Differential evolution (particle swarm?)
- Hyperplane mapping
- Minimization (or mapping) of

$$\sum \chi_i^2 = \frac{\left(f_i^{target} - f_i^{equilibria}\right)^2}{\sigma_i^2}$$

<sup>&</sup>lt;sup>1</sup> <u>http://vmecwiki.pppl.wikispaces.net/STELLOPT</u> and all references therein

### Background about STELLOPT, 2

#### ➤ Targets\*

Aspect Ratio, Beta, CURTOR, PHIEDGE, RO, RBTOR, Stored Energy, Volume, EXTCUR, Line\_NE, Faraday, PRESS, NE, TE, TI, LĪNE\_TE, LINE\_TI, IOTA, BROPE, FLUXLOOP, ROGOWSKI (DIAGNO), VESSEL, SEPARATRIX, BALLOON(COBRAVMEC), KINK, BOOTSTREAP, NEO, HELICITY, JSTAR, ORBIT(BEAMS3D), COIL\_BNORM

#### ➤ Variables\*

Almost anything that describes the equilibrium (think 'VMEC input parameters)

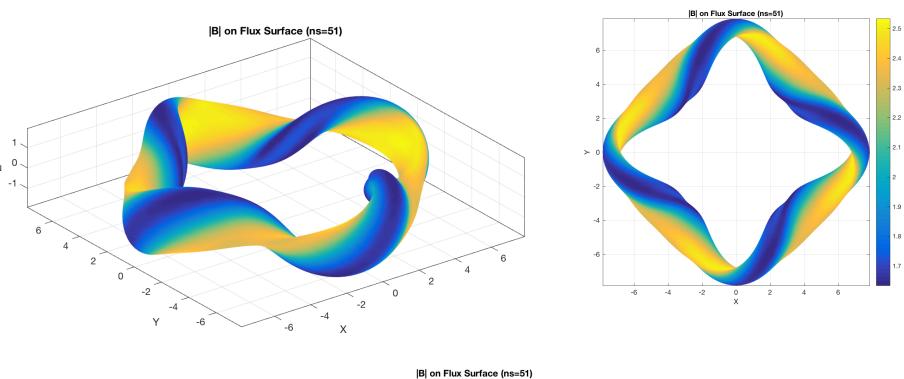
 Current and pressure profiles, external coil currents, enclosed flux, etc.

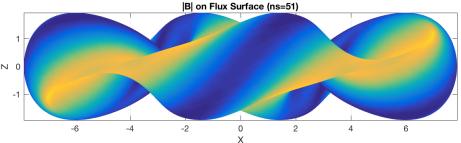
#### Includes non-VMEC quantities

• Te,Ne and Ti,Ni profiles, Zeff

#### Boundary of plasma

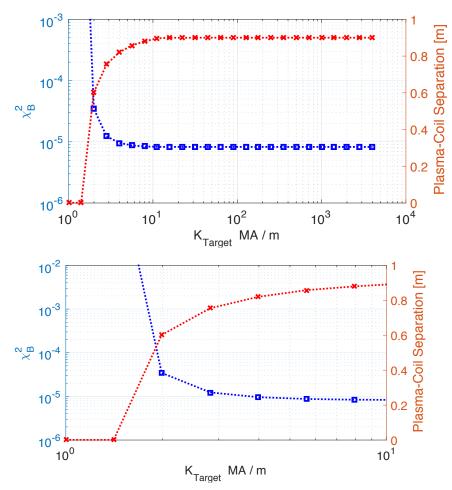
- RBC, ZBS (VMEC)
- RHOMN (Hirshman/Breslau)
- DELTAMN (Garabedian)


\* These lists are not necessarily complete


## STELLOPT now uses REGCOIL vary SEP to minimize $\chi_B^2$ while meeting a desired |K|

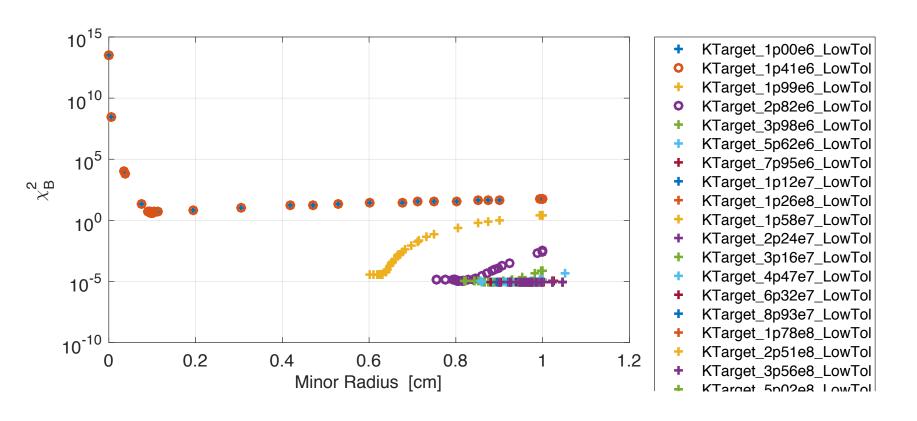
- REGCOIL does this:
  - Specify SEP and |K|, get back achieved  $\chi_B^2$  and  $\lambda$
- STELLOPT was modified<sup>1</sup> to include REGCOIL in its optimization loop
  - Given a specified target RMS-current-density, |K|, find the optimal plasma-coil separation, SEP, that minimizes the residual on the plasma surface,  $\chi_B^2$
- Goal #1: Help find plasma shapes compatible with distant coils.
  - 1<sup>st</sup> step: Use QHS46 as an initial test case to understand behavior of coupled code base
- Goal #2: Document the steps necessary to implement new targets and variables in the newest version of STELLOPT<sup>1</sup>
  - Permit rapid expansion of the flexibility of STELLOPT to new targets and variables.
  - For instance, see B. Faber's recent work on turbulence optimization.

<sup>&</sup>lt;sup>1</sup> http://vmecwiki.pppl.wikispaces.net/Stellopt\_Adding\_new\_code


## QHS46 Configuration: "6-m HSX"






## 'Target K' –scan results for QHS46 Show that optimal separation and $\chi_B^2$ asymptote for $K \geq 8$ MA / m

- Recall that the seperation is a 'constant' on the entire surface.
- Scan just completed
  - Details have not been fully analyzed
  - 'Cut coils' are not shown (to do)
  - Winding surface may have geometric difficulties for separation > 0.93



## A deeper look into the data shows similar behavior for $\chi_B^2(sep)$ for many K

- Lower boundary on  $\chi_B^2$  is beginning to be mapped
- Can fill in the scan with mapping option (stellopt)



### Next steps

- PPPL LDRD activities for FY '18
  - Continue to explore QHS/QAS configurations with new target option. 'Cut' coils from several surfaces for comparisons.
  - Target  $\chi_K^2$ .
  - Add a cost-function ('target') that penalizes/excludes plasma shapes that have sharp 'cusps' which cause problems with self-consistent uniformly spaced winding surfaces.
  - Add a coil-cutting routine in REGCOIL (Fortran) to generate initial coil shapes compatible with other coil optimization routines (COILOPT++, FOCUS, NESCOIL).
  - Generalize the winding surface for non-uniform separation between it and the plasma surface.
- WISTELL
  - Discussion