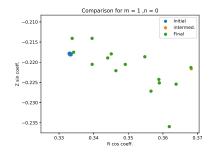
Convergence update and New Curvature metric

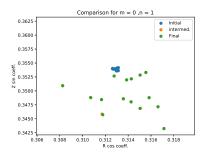
A. Bader

Wistell Meeting, Mar 30, 2018

Goal is to determine if the search space is "locally convex"

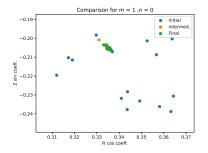
A set, $S \in \mathbb{R}^n$ is convex, if for any points, $x_1, x_2 \in S$, the straight line joining x_1, x_2 lies entirely in SA function f is convex if its domain, S is a convex set, and:

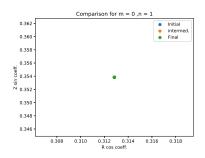

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y) \forall \alpha \in [0, 1]$$


f is locally convex if it is convex for some region of space When considering solutions to convex functions of the form $f:\mathbb{R}^n \to \mathbb{R}$, if f is locally convex then a local solution is a global for that region of space. This means algorithms based on following descent paths will yield global solutions.

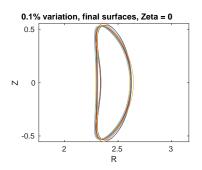
Question: Is our space locally convex?

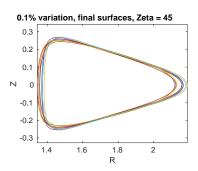
Answer: Last week indicated that it was not convex


Suggestion 1: Reduce variation

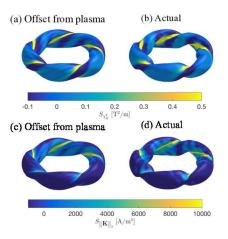


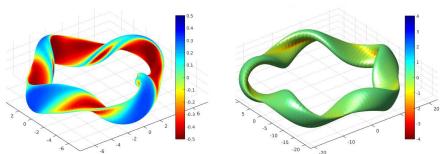
Reducing the initial spread from 5% to 0.1% had seemingly no effect on the distribution of final solutions, which vary significantly.


Suggestion 2: Only vary one component



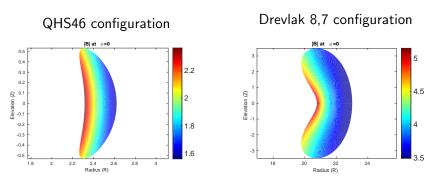
Only the m = 1, n = 0 terms are initially altered and allowed to be optimized. Solution converges.


Suggestion 3: Check whether boundaries are actually different in real space

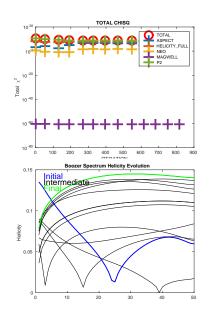

Boundaries are actually different in real space (unfortunately)
Additionally, increasing vmec accuracy, or adjusting LM factor did
not yield better results

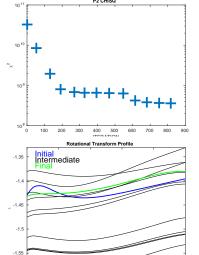
Add metric to directly target concave regions of the boundary

Sensitivity analyses indicate that the concave regions of the plasma are the hardest to produce. They tend to be the limiting factor for minimum coil-plasma distance


HSX and QHS46 have less strong concave regions than other configurations

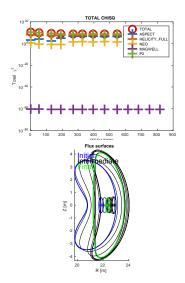
Michael Drevlaks "qhs 8 7" configuration has very strong concavities in the bean cross section, this creates problems for coil generation in that region.


Here the second principal curvature, *P*2 is used as a proxy for concavity.

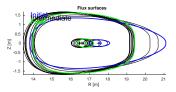

Bean cross section is the major problem area

HSX and QHS46 are actually not too bad here. In fact the concavity is so minimal that coil algorithms like FOCUS often have as much trouble in other regions.

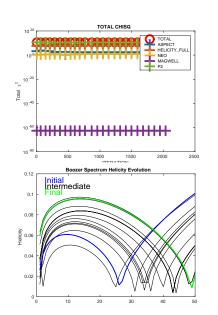
Optimizing for P2 on Drevlak 8,7 configuration

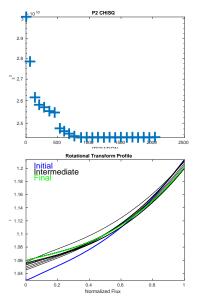

Normalized Flux

0.8

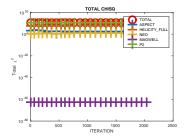

0.2

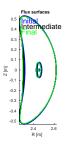
P2 CHISQ

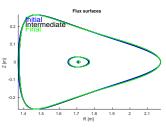

Optimizing for P2 on Drevlak 8,7 configuration



- Significant reduction of the concave region is achieved
- Reduction comes at the expense of Quasi-symmetry




Optimizing for P2 on QHS46 configuration



Optimizing for P2 on QHS46 configuration

- Modest reduction of concave region is achieved
- It's likely that the QHS
 46 configuration and
 HSX can't really be
 pushed much further in
 this aspect

