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Goal is to determine if the search space is “locally convex”

A set, S ∈ R
n is convex, if for any points, x1, x2 ∈ S , the straight

line joining x1, x2 lies entirely in S

A function f is convex if its domain, S is a convex set, and:

f (αx + (1− α) y) ≤ αf (x) + (1− α) f (y) ∀ α ∈ [0, 1]

f is locally convex if it is convex for some region of space
When considering solutions to convex functions of the form

f : Rn → R, if f is locally convex then a local solution is a global
for that region of space. This means algorithms based on following

descent paths will yield global solutions.

Question: Is our space locally convex?

Answer: Last week indicated that it was not convex



Suggestion 1: Reduce variation
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Reducing the initial spread from 5% to 0.1% had seemingly no
effect on the distribution of final solutions, which vary significantly.



Suggestion 2: Only vary one component
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Only the m = 1, n = 0 terms are initially altered and allowed to be
optimized. Solution converges.



Suggestion 3: Check whether boundaries are actually

different in real space
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Boundaries are actually different in real space (unfortunately)
Additionally, increasing vmec accuracy, or adjusting LM factor did

not yield better results



Add metric to directly target concave regions of the

boundary

Sensitivity analyses indicate that the concave regions of the plasma
are the hardest to produce. They tend to be the limiting factor for

minimum coil-plasma distance



HSX and QHS46 have less strong concave regions than

other configurations

Michael Drevlaks “qhs 8 7” configuration has very strong
concavities in the bean cross section, this creates problems for coil
generation in that region.
Here the second principal curvature, P2 is used as a proxy for
concavity.



Bean cross section is the major problem area

QHS46 configuration
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HSX and QHS46 are actually not too bad here. In fact the
concavity is so minimal that coil algorithms like FOCUS often have
as much trouble in other regions.



Optimizing for P2 on Drevlak 8,7 configuration
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Optimizing for P2 on Drevlak 8,7 configuration
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• Significant reduction of
the concave region is
achieved

• Reduction comes at the
expense of
Quasi-symmetry
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Optimizing for P2 on QHS46 configuration
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Optimizing for P2 on QHS46 configuration
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• Modest reduction of
concave region is
achieved

• It’s likely that the QHS
46 configuration and
HSX can’t really be
pushed much further in
this aspect
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