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The next 21 slides show the evolution of the new ‘optimal’

solution during case 1b with FACTOR/EPSFCN =25 / 1e-5

* This is the case shown in red ‘+’ symbols, see arrows

* The first slide will explain what is being shown in each subplot
* There are 21 set of plots, one for each new solution
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As an example, the first step (but don’t dwell on it)

* X, Y, Zaxis units are meters

* Upper Left: The original winding surface B LSETASH AT ~ MR
(in black) and the new winding surface X
(orange) are superimposed on the same
axes. This allows a simple ‘binary’ eye
inspection to see the gross features of
the surfaces

* Upper Right: Planar slices of the winding

surface at ¢ = (0°,45°,90°) » 2%
NFP

* Lower left and right: The distance (in
cm) from the new surface to the original
surface, multiplied by the sign of the
change in the vertical (Z) —direction

Blue = Init. Surface, Orange = New Surface

| |
N — o = N

Original target |B| on target LCFS also
shown for reference

This is not a ‘self-consistent’ | B|

AUBURN ) 4

UNIVERSITY



Iterative solution #2, The first step

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface
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Iterative solution #3

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface
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Iterative solution #4

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface
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Iterative solution #5

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface
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Iterative solution #6

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface

25

2 o, honors
24
2
1 .

ol
" I ‘ B
0 > y N E
J <
- 1
<%
. <

PN 1

-1 e
1

AUBURN J

UNIVERSITY



Iterative solution #7

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface
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Iterative solution #8

Blue = Init. Surface, Orange = New Surface
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Blue = Init. Surface, Orange = New Surface
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Iterative solution #9: A new rate of descent begins

now; Surface will become narrower and taller.

Blue = Init. Surface, Orange = New Surface Blve = Inlt. Surface; Ornge = New Surface
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Iterative solution #10
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Iterative solution #11

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface
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Iterative solution #12

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface
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Iterative solution #13

Blue = Init. Surface, Orange = New Surface Blue = |3"it' Surface, Orange = New Surface
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Iterative solution #14

Blue = Init. Surface, Orange = New Surface
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Blue = 5nit. Surface, Orange = New Surface
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Iterative solution # 15

Blue = I3nit. Surface, Orange = New Surface
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Blue = Init. Surface, Orange = New Surface
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Iterative solution # 16: Descent slows down from

here on to the end

Blue = Init. Surface, Orange = New Surface
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Blue = I?it. Surface, Orange = New Surface
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Iterative solution #17

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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Iterative solution #18

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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Iterative solution #19

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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Iterative solution #20

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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Iterative solution #21

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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Iterative solution #22: (24x32 cpu-hour time limit)

Blue = Init. Surface, Orange = New Surface Blue = '?it- Surface, Orange = New Surface

* The solution after
the last iteration
is teller and 2
narrower than the -
starting position

 Recall: The
starting position
was a ‘uniform
distance’ away
from the plasma
boundary

A [cm]
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The optimizer runs that demonstrated the most rapid descent
A) look a little different, B) are still evolving, and C) terminated

because the solver was in a local minimum (I think)

* The surfaces of the two

i o i Surface, Orange o New Sunface 1€ = L. Surface, Orange = New Suface heacOL oz B CHSa
branches that descend 2 T T T ]
more rapidly, but are i.IT,vff_‘$+++++++aL++ e
truncated, look a little B, T
different i N T

* blue +'s (upper left) T, ez

* red squares (lower left) 5 2 RS SRR e

* The red square descent i I T
path has one extra step i 5 . e

— see lower right plots

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface

» The solver got stuck in

a local minimum? S\
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The optimizer branch that descends more slowly looks

vaguely like the ‘best’ case: Taller, but less narrow!

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface REGCOIL CHI2 B CHISQ
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Helical Stripes: The runs that descend very slowly

has very corrugated surfaces.

Blue = Init. Surface, Orange = New Surface Riyie= InlL. Surface Og = New Surface
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Left: HSX (scaled Right: QHS46
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Left: HSX (scaled) Right: QHS46
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Left: HSX (scaled) Right: QHS46
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Left: HSX (scaled) Right: QHS46
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Left: HSX (scaled) Right: QHS46

AUBURN

UNIVERSITY



Left: HSX (scaled) Right: QHS46
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Left: HSX (scaled) Right: QHS46
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Left: HSX (scaled) Right: QHS46
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Black: HSX (scaled) coils. Color:QHS46 coils
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Black: HSX (scaled) coils. Color:QHS46 coils
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Black: HSX (scaled) coils. Color:QHS46 coils
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Black: HSX (scaled) coils. Color:QHS46 coils
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Black: HSX (scaled) coils. Color:QHS46 coils
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Black: HSX (scaled) coils. Color:QHS46 coils
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