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• Winding surface is specified by a set of Fourier coefficients in toroidal space !, #
• Coordinate	system

• Superimpose	Cartesian	(X,	Y,	Z)	and	spherical	(R,	#,	Z)

• ! = atan >

?
Poloidal angle in the R − Z plane

• # = atan C

>
Toroidal angle (in the X − Y plane)

• The	surface	(2D	manifold)	is	defined	by	the	locus	of	point	given	by

J !, # =KJL,M,N cos O! + Q# +KJL,M,R sin O! + Q#

Z !, # =KSL,M,N cos O! + Q# +KSL,M,R sin O! + Q#

• Stellarator symmetry is enforced for now
• With stellarator symmetry, many modes must be 0:   All: JL,M,R All: SL,M,N, and some (m,n) combinations
• The ability to allow non-stellarator symmetry has been implemented, but not tested

• STELLOPT varies the coefficients and improves the quality of Bnorm on the target surface

• Initial guess: A winding surface with a uniform separation (See previous presentations)
• Optimal winding surface: For QHS46, the initial trend is to make the winding surface:

• Vertically elongated
• Closer to the plasma, radially

STELLOPT can now manipulate the set of Fourier 
coefficients that describe the coil winding surface
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• Initial guess was a winding surface with uniform separation, KRMS= 2.82e6 A/m
• 1618 total harmonics were allowed to be varied
• 1618 identical targets of !"#$%&'

• Behavior exhibits a dependence on L-M optimizer run parameters of FACTOR / EPSFCN
• Time limit reached

• Cases b, c, f, g, i
• “algorithm estimates that the relative error between x and the solution is at most xtol” 

• Cases a, d, e, h

STELLOPT finds a better solutions (smaller residual error, reduced 
()*+, on the target plasma surface) when manipulating the Fourier 
coefficients. An improvement by one order of magnitude compared 
to the uniform winding surface.
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• This is the case shown in red ‘+’ symbols, see arrows
• The first slide will explain what is being shown in each subplot
• There are 21 set of plots, one for each new solution

The next 21 slides show the evolution of the new ‘optimal’ 
solution during case 1b with FACTOR/EPSFCN = 25 / 1e-5  
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As an example, the first step (but don’t dwell on it)

• X, Y, Z axis units are meters
• Upper Left: The original winding surface 

(in black) and the new winding surface 
(orange) are superimposed on the same 
axes. This allows a simple ‘binary’ eye 
inspection to see the gross features of 
the surfaces

• Upper Right: Planar slices of the winding 
surface at ! = 0°, 45°, 90° ∗ *+,°-./

• Lower left and right: The distance (in 
cm) from the new surface to the original 
surface, multiplied by the sign of the 
change in the vertical (Z) –direction

• Original target |B| on target LCFS also 
shown for reference
• This is not a ‘self-consistent’ |B|
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Iterative solution #2, The first step
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Iterative solution #3
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Iterative solution #4
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Iterative solution #5
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Iterative solution #6
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Iterative solution #7
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Iterative solution #8
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Iterative solution #9: A new rate of descent begins 
now; Surface will become narrower and taller.
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Iterative solution #10
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Iterative solution #21
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Iterative solution #22: (24x32 cpu-hour time limit)

• The solution after 
the last iteration 
is teller and 
narrower than the 
starting position 

• Recall: The 
starting position 
was a ‘uniform 
distance’ away 
from the plasma 
boundary
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The optimizer runs that demonstrated the most rapid descent
A) look a little different, B) are still evolving, and C) terminated 
because the solver was in a local minimum (I think)
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• The surfaces of the two 
branches that descend 
more rapidly, but are 
truncated, look a little 
different

• blue +’s (upper left)
• red squares (lower left)

• The red square descent 
path has one extra step 
– see lower right plots

Ø The solver got stuck in 
a local minimum?
Ø “algorithm estimates 

that the relative 
error between x and 
the solution is at 
most xtol” 
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The optimizer branch that descends more slowly looks 
vaguely like the ‘best’ case: Taller, but less narrow!

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
ITERATION #104

10-4

10-3

@
2

REGCOIL CHI2 B CHISQ

1a 10/1e-5
1b 25/1e-5
1c 100/1e-5
1d 10/3e-5
1e 25/3e-5
1f 100/3e-5
1g 10/1e-4
1h 25/1e-4
1i 100/1e-4

18

*



Helical Stripes: The runs that descend very slowly 
has very corrugated surfaces.
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Helical Stripes: The runs that descend very slowly 
has very corrugated surfaces.
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Discrete coils, VMEC ‘surfaces’ and Poincaré plots



• Cutting coils, calculating the vacuum VMEC MHD solution and Boozer spectrum

• Generate coilsets for two different winding surfaces

• The 1
st

winding surface is ‘uniformly displaced’ 85.3 cm from the plasma

• Shown in a previous Group Meeting: March 23, 2018 @ https://wistell.engr.wisc.edu/?page_id=156

• The 2
nd

winding surface is the one found by STELLOPT with Fourier Series variations

• shown in detail on slides 4-26 on this presentation

• Difference approx. +(40-45)/-(30-35) cm in displacement of winding surface

• Coilsets explored consist of a discrete number of unique coils

• Uniform winding surface: 4, 5, 6 (Surfaces are not  great)

• Fourier/Optimized winding surface: 3, 4, 5, 6 (VMEC converged with even only 3 coils/FP)

• VMEC(+post) are run for each of the cases

• Free-boundary VMEC (using the coils via an ‘mgrid’)

• Boozer spectrum (xbooz_xform)

Ø FOR NOW, I only show the case with 6 coils
Ø Other cases are interesting, but the ‘best Boozer spectrum’ results to date 

have been found with 6 coils per field period

Coils, MHD equilibrium and Boozer spectrum for two 

different winding surfaces: ‘Uniform distance’ and  

‘Fourier/Optimized’
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• Slide 23

• Mod B on LCFS for: QHS46 and Coil set with {4, 5, or 6} coils on 

uniformly displaced surface

• Lots of tight twists, closely-fitted high-curvature sections. Not great 

results

• Slide 24 

• Mod B on LCFS for: QHS46 and with 6 Coils / field period on the 

Fourier/Optimized surface

• Also see the interactive Matlab figure

• Slide 25: Different views of the coils

• Slide 26: Poincaré plot with field line following and VMEC 

surfaces for vacuum provided by 6-coil / field period model

Slide labels

22



4, 5, or 6 Coils / field period
Uniform winding surface, 2.82e6 A/m
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6 Coils / field period
Fourier/Optimized winding surface
2.82e6 A/m on winding surface; 1.5 MA in each coil

Also see the interactive matlab figure: 
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6 Coils / field period
Fourier/Optimized winding surface

25



Solid Lines: FLARE

(Line Following w/ QHS46_v6 coils)

Dashed Lines: VMEC  (VMECplot.m) 

(free boundary w/ QHS46_v6  coils, (+) = B-Axis

• VMEC vacuum surfaces agree well 

with field line following (by eye)

• Axis is close

• Shapes are qualitatively similar

• VMEC’s ‘last closed flux surface’ 
encloses a small stochastic region

• Not unexpected
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Comparison of QHS46 Fourier Optimized coils 
to HSX coils which have been scaled to the 
same effective major radius as QHS46



• The (HSX) QHS configuration and coilset are scaled to match the same effective major radius as the 

QHS46 configuration that I have been using for the STELLOPT/REGCOIL studies

• Scale factor:  6.025006 / 1.211364  (~ 5)

• The scaled QHS configuration was run through VMEC (fixed boundary)

• Started with input.QHS_Rstart_1_513_32polmodes_18x24_axis_v2

• Scaled the boundary. New filename: input.hsx_scaled_to_QHS46

• I forgot to scale the axis; VMEC detected this, found a new axis and proceeded to converge

• Started with coils.hsx_1fil

• Scaled the coils (with read_coils_scaled.m, a modified version of read_coils.m)

• Coil data structure is stored in matlab data file: HSX_coils_scaled_to_QHS.mat

• Slide 29: Short list of geometric quantities for the two configurations 

• Slides 30-31: |B| on the LCFS and a subset of the coils for this scaled configuration are compared to 

the |B| and coils of QSH46 with the Fourier Optimized Winding Surface (FOWS)

• See additional slides: The individual coils are plotted on the same axes

Slide 32 – Final comments



A comparison of a few geometric quantities (from 
the threed1 output files)

HSX, scaled
• Aspect Ratio = 9.970152
• Mean Elongation = 3.851684
• Plasma Volume = 43.430845 [M**3]
• Cross Sectional Area = 1.147258 [M**2]
• Normal Surface Area = 193.205616 [M**2]
• Poloidal Circumference= 4.693414 [M]
• Major Radius = 6.025005 [M] (from 

Volume and Cross Section)
• Minor Radius = 0.604304 [M] (from 

Cross Section)
• Minimum (inboard) R = 4.438649 [M]
• Maximum (outboard) R = 7.525447 [M]
• Maximum height Z = 1.562752 [M]

QHS46, 6 Coils on FOWS
• Aspect Ratio = 6.699959
• Mean Elongation = 4.064947
• Plasma Volume = 96.174025 [M**3]
• Cross Sectional Area = 2.540507 [M**2]
• Normal Surface Area = 293.721616 [M**2]
• Poloidal Circumference= 7.033194 [M]
• Major Radius = 6.025006 [M] (from 

Volume and Cross Section)
• Minor Radius = 0.899260 [M] (from 

Cross Section)
• Minimum (inboard) R = 4.108455 [M]
• Maximum (outboard) R = 7.840492 [M]
• Maximum height Z = 1.951591 [M]



Left: HSX (scaled)        Right: QHS46



Left: HSX (scaled)        Right: QHS46



Final comments

• Visual inspection shows that the coils based on the Fourier Optimized 

Winding Surface (FOWS) are qualitatively similar to the HSX coils

• Longer and more complicated winding path

• Twice the plasma volume (96 m
3

vs 43 m
3
) and smaller aspect ratio (6.7 vs. 

10.0).

• As one distorts the FOWS coils towards the scaled HSX coils, the plasma volume 

shrinks and the spectrum changes.

• Loose ends, next steps

• The initial runs have some small ‘buggy’ constraints.  Will re-run to confirm 

above results (cluster upgrades on-going)

• It has been challenging to get VMEC to converge with enough spectral (NTOR, 

MPOL) components to absolutely confirm the Boozer spectrum comparison. 

Not unexpected given the pathological boundary constraint

• High-fidelity Boozer spectrum calculations via field-line following are underway.

• ‘Control’ coils (saddle type) to target higher order poloidal modes for ‘edge 

control’ (such as through shear) would be interesting to insert at this point


