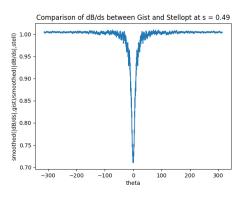
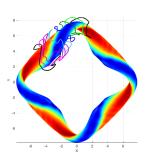
Wistell group summary

A. Bader

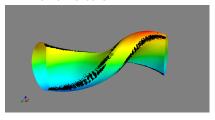

Wistell Meeting, May 18, 2018

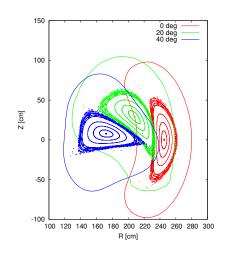
Current focused activities for optimization

- Turbulence optimization (Ben, John, Aaron, Chris, Paul)
- Improving coil design (John, Thomas, Aaron, with tools from Matt L. and Caoxiang Z.)
- Divertor/Edge (Heinke, Aaron, Oliver)
- Energetic particles (Evan, Aaron)
- Improving optimization algorithms (John, Aaron)


Turbulence optimization

- PTSM3D algorithm to calculate energy transfer from stable to unstable modes is implemented in STELLOPT
- However, STELLOPT calculations of geometric quantities differs from GIST calculations of geometric quantities


Coil design

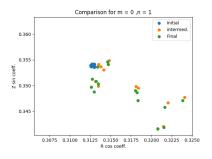

- Regcoil in stellopt allows for winding surface modification
- Standalone winding surface modification also available
- Principle curvature metric implemented in Stellopt
- FOCUS regularly used, and currently being implemented in Stellopt

Divertor/Edge

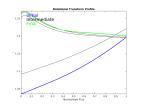
- Available divertor designs determined by coil positions
- Current algorithms indicate that it will be possible to extend coils away from plasma in regions desirable for divertors

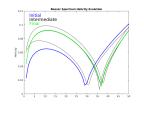
Energetic Particles

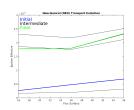
BEAMS3D

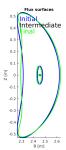

- STELLOPT tool BEAMS3D Monte-Carlo beam solver
- Works standalone for particle following (local machine)
- Beam deposition tuning still in progress
- Task: Begin simulations with Monte-Carlo EP solver from BEAMS3D

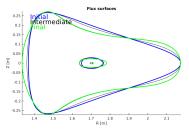
Nemov Gamma metrics

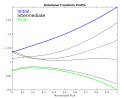

- Not in STELLOPT, although implemented in Drevlak's ROSE code
- Verbal communication from Drevlak implies that he has seen little success for QHS equilibria
- More detailed testing probably required, and if useful, may need implementation in STELLOPT

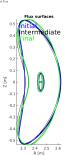

Improving optimization algorithms

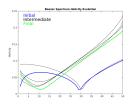

- Search space appears to be non-convex
- Levenberg-Marquardt optimization, while it usually finds improvements, may not be the best algorithm
- Task 1: Implement
 Quasi-Newton optimization
 algorithm
- Task 2: Benchmark on ROSE, and possibly repeat important optimization runs there

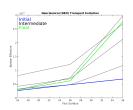


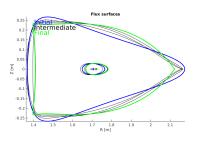

Forcing a decreasing iota profile above 1

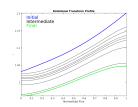


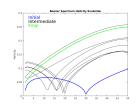


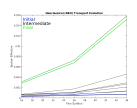


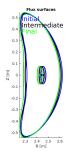


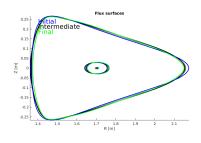

Forcing a decreasing iota profile below 1










Forcing a decreasing iota profile below 1, include curvature

