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1 Introduction

The goal is to calculate coefficients for various geometric coordinates inter-
nally in STELLOPT. These geometric coefficients will be used as input for the
PTSM3D code, which will calculate a maximum coupling coefficient between
unstable and stable modes. The goal is to use this metric as an optimizing
parameter.

Ideally the geometric components computed by STELLOPT would agree
exactly with external calculations using the GIST code. The first attempt, an
adaptation of the stellopt_txport code, written by Sam Lazerson, had significant
errors in the Lo coefficient. The alternative approach currently used, was written
by Matt Landreman. The code is renamed to “vmec2gs2”, since it converts to
coefficients using normalizations favored by GS2. An extra step to convert to
the GIST coefficients is done after. The conversion was calculated by Ben Faber
and is included at the end of this document.

All in all there are three pathways to calculate the same final quantity. These
are:

e Use STELLOPT to create a wout file in .txt format. Use GIST to calcu-
late the geometric quantities. Use standalone PTSM3D to calculate the
coupling coefficient.

e Use STELLOPT to create a wout file in .nc format. Use internal “vmec2gs2”
and conversion equations to calculate geometric quantities. Use stan-
dalone PTSM3D to calculate the coupling coefficient.

e Use STELLOPT to create a wout file in .nc format. Use internal “vmec2gs2”
and conversion equations to calculate geometric quantities. Use PTSM3D _opt
in STELLOPT to calculate the coupling coefficients.

The second and third methods agree exactly. That is, there is no difference be-
tween the standalone PTSM3D code and the PT'SM3D _opt code in STELLOPT.
However, there is a difference in the geometric components. These differences
produce about a 4% difference in the “usm” calculation in the PTSM3D code.



This difference is the same for normalized flux values of s=0.3, 0.5 and 0.7,
however it is not true that one method always calculates a larger value than the
other. Furthermore, the error does not improve with an increase in the number
of flux surfaces in the VMEC wout file. No improvement is seen between 101
and 201 surfaces, implying that the error does not arise from a simple difference
in interpolation schemes.

Components between the two calculations, i.e. the data that gets fed into
PTSM3D show some differences. The rest of this writeup will be an attempt to
catalog these differences.

There are some questions to ask on this topic. Is the 4% error good enough,
or do we need to track down where it’s coming from? If 4% is not good enough,
we may need to think more about the PTSM3D algorithm, because it is quite
sensitive. Is there a way to formulate a new metric based on the coupling coeffi-
cients that is less sensitive to precision calculation of the geometric quantities?

2 Cataloguing Errors

For the calculations below, we calculate over 100 poloidal turns, i.e. from 6 =
—1007 to 1007 with 12800 total points, for 128 points per poloidal turn. This
distance and resolution was found previously to be sufficient to give a stable
answer in PTSM3D for a given geometry.

We call a generic geometric quantity, @, if calculated by vmec2gs2, @, and
if calculated by GIST, Q.

Calculating the relative errors in the terms is somewhat difficult. Many of the
terms oscillate around zero. Some contain secular terms and have an envelope
that increases monotonically with the poloidal angle, . A simple metric of
Q./Qg will spike when Q4 ~ 0, provided that @, is nonzero at that point. A
metric like |@Q, — Q4|/max(Q,) also has a problem in that it can miss important
errors near # = 0 where the secular contribution is small. The method chosen
here is to plot |Q, — Q4|/Q., where Q, is an average of |Q,| over a range of ¢
that is much less than a single oscillation (in this case between 5 and 20 points in
either direction). All references to “error” in the text will refer to this quantity.

The parameters g11, g12,g22 and Bhat all show very good agreement be-
tween the two codes. The errors for the parameters for s = 0.5 are plotted
below.
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Figure 1: Error for the g11 term
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Figure 2: Error for the g12 term

300




0.00175 4

0.00150 -

0.00125 4

0.00100 4

0.00075 4

0.00050 4

0.00025 4

0.00000 A

T T T T T T
—300 —200 —100 0 100 200

Figure 3: Error for the g22 term
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Figure 4: Error for the Bhat term
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The errors are larger for the jac, L1 and L2 terms. First the errors for jac
are given for three values of s, 0.3, 0.5 and 0.7.
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Figure 5: Error for the jac term for s = 0.3
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Figure 6: Error for the jac term for s = 0.5
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Figure 7: Error for the jac term for s = 0.7

We can also plot a zoom in of jac calculated by both STELLOPT and GIST,
to see where the errors are. The following plot is for s = 0.5.
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Figure 8: jac, and jacg



We do the same now for L1. First we provide the three errors for s = 0.3,0.5
and 0.7. Then we provide an example of the difference for s = 0.5
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Figure 9: Error for the L1 term for s = 0.3
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Figure 10: Error for the L1 term for s = 0.5
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Figure 11: Error for the L1 term for s = 0.7
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Figure 12: L1, and L1,



Finally the L2 term.
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Figure 13: Error for the L2 term for s = 0.3
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Figure 14: Error for the L2 term for s = 0.5
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Figure 15: Error for the L2 term for s = 0.7
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Figure 16: L2, and L2,
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As a final analysis. We zoom in to the L2 parameter near one of the locations
where a ~ 7% error is seen.
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Figure 17: Error for the L2 term for s = 0.5, zoomed into region of a large error
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Figure 18: L2, and L2, zoomed towards a region of large error

It’s clear that there is actually a finite divergence of the two parameters in
this region. The error is real, and not an artifact of a location where L2 ~ 0.
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3 Calculation of PTSM3D quantities

The calculation for the PTSM3D coupling coefficient for non-zonal coupling are
shown below for three fields lines at s = 0.3, 0.5 and 0.7

’ S \VMEC \ GIST \ ratio ‘
0.3 | 0.7702 | 0.7984 | 0.965
0.5 | 0.8129 | 0.8472 | 0.959
0.7 | 0.8087 | 0.7868 | 1.0278

4 Converting between GS2 and GIST

The following are the conversions implemented in STELLOPT to convert from
the output of vmec2gs2 to the GIST coordinate system. The calculations were
done by Ben Faber, and implemented by me.

g1l = gds22/5?

912 = gds21/s

g22 = gds?2
Bhat = Bmayg

jac = 2q/(Lref*(1 + dA/df)\/g)
L2 = Bhat  cvdrift/2
L1 = —Bhat * cudrift0/(28)

5 Next steps

There are a few steps that should be done. The first is to re-implement the
number of poloidal turns used. The required range of @ is inversely proportional
to ¢’. This is mostly a trivial task, but there may need to be some careful
consideration for calculations at which ¢’ ~ 0, because in this case the number
of turns required is very large and this can lead to a memory overflow crash in
STELLOPT.

Another step, optional now, is to load the STELLOPT parameters directly
from memory rather than reading them from the “wout” file. Hopefully there
should be absolute no difference between these two methods, but that needs to
be checked as well.

It is also possible to attempt some basic optimization with the calculation in
its current state (provided the implementation of the proper number of turns).
This is probably a priority, so that we can get something to present on turbulence
optimization. However, I would like some confirmation that the errors we see
currently are acceptable.
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Current plan is to implement the theta range and begin some optimization
calculations this week.

13



