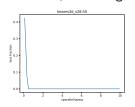
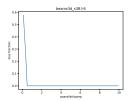
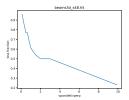
Intro to BEAMS3D in Stellopt

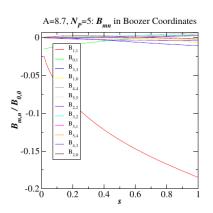
A. Bader

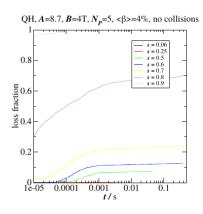

Wistell Meeting, Jul 27, 2018


Beams3D for Monte-Carlo optimization of fast-ion transport


- Currently no good metric for fast-ion transport
- ullet In lieu of a metric, we instead generate fast-ions and follow them for \sim one collision time
- The optimization metric is the percentage of particles that leave the domain
- Inputs to BEAMS3D
 - Number of poloidal (N_u) and toroidal (N_v) points to sample
 - Particle energies, given as arrays of \textit{v}_{\parallel} and $\textit{v}_{\perp}\text{, or as }\textit{v}_{\parallel}$ and μ
 - Number of flux surfaces to optimize for, and weights for each flux surface
 - The code will follow one particle for each coordinate point, so $N_u N_v N_{vel} N_s$ points
 - For this talk: very initial results for $N_v=N_u=5$ and $N_{vel}=11$

Results for Michael Drevlak's QHS configuration, "optimized" for Alpha-particle transport


Michael Drevlak has generously provided us with a VMEC file for a QHS configuration optimized for energetic ion transport.



Losses from Beams 3D are higher than what M. Drevlak calculated

