Update on Wistell progress with visitors

A. Bader, A. Ware, M. Drevlak

Wistell Meeting, Aug 24, 2018

Overview of Andrew Ware visit

- Goals, in rough order of priority
- J and J^* optimization mostly complete
- Ballooning optimization in Stellopt complete
- Import Nemov guiding center code into Stellopt partially complete

J and J^* optimization

J is the second adiabatic invariant:

$$\int_{a}^{b} v_{\parallel} dI$$

where the integration is on a field line between particle bounce points.

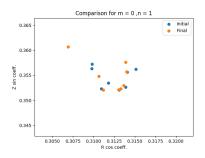
J* optimization is already in STELLOPT, but not really appropriate for QH.

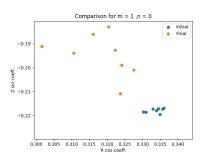
J calculation was written (by me) but not yet integrated into STELLOPT. Based on results from M. Drevlak's week, this may not be relevant.

J calculation for HSX, for particles with turning points at $B_{\min}=E/\mu=0.9~\mathrm{T}$

Ballooning optimization

- Set up run with Ballooning optimization and current calculationg with BOOTSJ
- Unfortunately, ran into repeated crashes during optimization
- Crashes are a regular STELLOPT "feature" and are resolved mainly by adjusting weights


Importing Nemov orbit following into STELLOPT


- Current status framework for introduction of Nemov metric implemented in STELLOPT (Bader)
- Nemov metric successfully run in standalone format (Ware)
- Full integration of Nemov code into STELLOPT status unknown

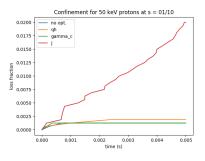
Overview of Michael Drevlak visit

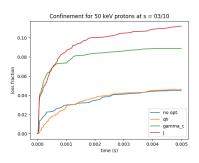
- Learn how to run ROSE
- Test case for rose optimization for energetic particles
- Learn how to run ONSET

Convexity test of ROSE

- Procedure identical to STELLOPT initialize optimizations for the same target (here QH) with slightly different initial configurations
- m and n components were varied by 0.01%
- 10 ROSE runs were initiated, 1 crashed
- ROSE shows identical non-convex behavior to STELLOPT problems are with the search space not the choice of STELLOPT optimizer

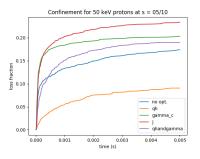
ROSE runs with several optimization choices

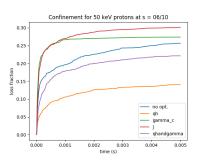

- ROSE runs included several different optimization targets
- QH optimize for Quasi-symmetry
- γ_c Optimize for Nemov's γ_c metric
- ullet J optimize to minimize deviations of J on a flux surface


Evaluation of optimization metrics

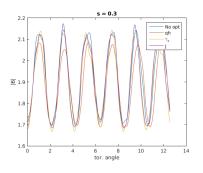
Туре	QH	$\epsilon_{ ext{eff}}$	γ_c	J
Baseline	0.0308	0.0042	0.020	2.37
QH	0.011	0.0028	0.016	2.17
γ_c	0.039	0.0030	0.010	3.66
J	0.042	0.0054	0.021	1.97
$QH + \gamma_c$	0.015	0.0041	0.0046	_

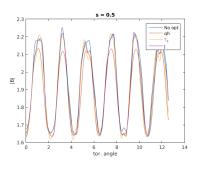
- Each row in the table represents a separate ROSE run which is optimized for a given target equilibrium.
- The s = 0.6 flux surface is targeted in every case
- ullet No runs explicitly target $\epsilon_{\rm eff}$, but all ensure it is below 0.01.
- Baseline run is the QHS46 equilibrium


Evaluating configurations for EP confinement (1)



- 1600 particles followed uniformaly distrubted on the desired flux surface
- pitch angles randomly chosen for each particle
- evaluation done with M. Drevlak's DOEVAL code follows in Boozer Coordinates


Evaluating configurations for EP confinement (2)



- 1600 particles followed uniformaly distrubted on the desired flux surface
- pitch angles randomly chosen for each particle
- evaluation done with M. Drevlak's DOEVAL code follows in Boozer Coordinates

—B— on field line for the four cases

