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In quasisymmetric designs to date, optimization has been
done using “textbook’ optimization algorithms to minimize
symmetry-breaking Fourier modes 1n B.

— Many local minima, so result depends on initial guess.

— Never sure you’ve found all the interesting regions of
parameter space.

— Little insight as to the amount of freedom in the solution.



* In quasisymmetric designs to date, optimization has been
done using “textbook’ optimization algorithms to minimize
symmetry-breaking Fourier modes 1n B.

— Many local minima, so result depends on initial guess.

— Never sure you’ve found all the interesting regions of
parameter space.

— Little insight as to the amount of freedom in the solution.

* For a complementary approach without these shortcomings,
here we extend Garren & Boozer (1991).

— Usually cited as a proof that quasisymmetry cannot be
achieved to (a/R)’.

— Less well known that 1t contains a useful constructive
procedure.

— Provides 1nsight & initial conditions for stellopt.



Main idea of Garren-Boozer: expand position vector

using Frenet frame, equate 2 representations of B.

or, ~ dt dn
ol e
I, =magnetic axis, K =curvature, 7 =torsion

Frenet frame (t,n,b): t,

t =tangent, n =normal, b =binormal
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Main idea of Garren-Boozer: expand position vector

using Frenet frame, equate 2 representations of B.
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Frenet frame (t,n,b): 0 —t, L K n
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I, = magnetic axis, K =curvature, 7 =torsion

t =tangent, n =normal, b =binormal
r(r.6.5)=r,(¢)+X(r.0.0)n(¢)+Y(r.0.5)b(¢)+2(r.0.¢ )t(¢)
X(r,O,C): r[XlS (C)sin9+ch(C)c059]+0(r2). Same for Y, Z.

B:BrVr+BOV9+BCV§, B=VyxVO+1V{xVy

cyclic permutations.
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Dual relations: Vr= {
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Garren & Boozer derived a 1D “Ricatti” ODE

K(C ) = curvature, T(é’ ) =torsion, I, =current density

t =rotational transform, 1 =some constant

r(r,O,C) = r0(§)+erc (é’)cos@n({)+r Y (@’)51n9+ Y (C)cos@}b(§)+0(r2)
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We have a new proof of existence & uniqueness of

solutions, even though the GB ODE is nonlinear.

Given P(C) >0, Q(C), and G(O), with P(é’) and Q(é’)

2m-periodic, bounded, and integrable, a solution to
do )

—+l(P+G )+Q:O 1
o 1)

is a pair {l, G(é’)} solving (1) where G(C) is 2r-periodic.

Theorem: A solution exists and it is unique.
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We have a new proof of existence & uniqueness of

solutions, even though the GB ODE is nonlinear.

Given P(C) >0, Q(C), and G(O), with P(é’) and Q(é’)

2m-periodic, bounded, and integrable, a solution to
do )

—+l(P+G )+Q:O 1
o 1)

is a pair {l, G(é’)} solving (1) where G(C) is 2r-periodic.

Theorem: A solution exists and it is unique.

— Numerical solution is very robust.
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We can now precisely state the amount of

freedom in 1st-order-in-r quasisymmet

* For every magnetic axis shape (2 functions of ¢) with
nonvanishing curvature, and 3 real numbers (77, ¢(0),

and [,), there 1s precisely 1 way to shape the near-axis
surfaces consistent with quasisymmetry.

— For stellarator symmetry, 6(0) = 0.

— In the usual case of no current density on axis, then 7, = 0.
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We can now precisely state the amount of

freedom in 1st-order-in-r quasisymmet

* For every magnetic axis shape (2 functions of ¢) with
nonvanishing curvature, and 3 real numbers (77, ¢(0),
and [,), there 1s precisely 1 way to shape the near-axis
surfaces consistent with quasisymmetry.

— For stellarator symmetry, 6(0) = 0.

— In the usual case of no current density on axis, then 7, = 0.

* This solution may be quasi-axisymmetric or quasi-
helically symmetric.

* However many of these solutions have absurdly high
elongation.
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The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration

0 Error in iota
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N =# of grid points in
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Quasi-axisymmetric example

Inputs: axis shape Ro(q)) = 1+0.045cos(3¢),
Z,(9)=-0.045sin(3),
7=-09, (0)=0

Results: (R/a =10)




Quasi-axisymmetric example

Aspect ratio 10 Aspect ratio 80
Fourier harmonics B, , in Boozer coordinates Fourier harmonics B, , in Boozer coordinates
0.012
— m # 0, n = 0 (Quasiaxisymmetric) — m # 0, n = 0 (Quasiaxisymmetric)
0.084 —— m =0, n= 0 (Mirror) — m = 0, n = 0 (Mirror)
—— m =0, n =0 (Helical) 0.0101 __ 11 %0, n = 0 (Helical)
0.06 - 0.008 -
0.006 -
0.04 A
0.004 -
0.02 -
0.002 -
0.00 - 0.000 - =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/a (Sqrt normalized toroidal flux) r/a (Sqrt normalized toroidal flux)
N ur - ,
1 +
095 O ‘
09 o2 - - - -
0.8 0.9 1 1.1
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If you generate coils to make a high-A surface, you

actually often get a lower-A stellarator.

Fourier harmonics B, , in Boozer coordinates

0.150 A

— m = 0, n = 0 (Quasiaxisymmetric)
= m =0, n # 0 (Mirror)
— m # 0, n # 0 (Helical)

Poincare plot using vacuum field from coils

—— VMEC boundary
— A=160 target surface

0.7

0.8 0.9 1.0 1.1 1.2
R




Quasi-helical symmetry example

Inputs: axis shape R

¢)=1+0.265cos(4(p),
$)=-021sin(4¢),
7=-2.25, a(o)=o

Z

0

Results: (R/a =40) |
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Quasi-helical symmetry example

Aspect ratio 40 Aspect ratio 160
Fourier harmonics By, , in Boozer coordinates Fourier harmonics By, , in Boozer coordinates
0.06 4 —— m =0, n =0 (Toroidal) — m # 0, n =0 (Toroidal)
—— m =0, n = 0 (Mirror) 0.0150 1 —— m =0, n = 0 (Mirror)
0054 4 m = n (Helically symmetric) —— 4 m = n (Helically symmetric)
' —— m # 0, n # 0 (Other helical) 0.0125 4 —— m = 0, n # 0 (Other helical)
0.041 0.0100 -
0.03 1 0.0075 A
0.02 - 0.0050
0.01 4 0.0025 A
0.00 A 0.0000 A
—001 T T T T _00025 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/a=\/§ rla =vsS
.UV 1IN v U u

-0.1 ¢

02 —¢ =m/8 @
—¢ = /4

095 3} —¢=37/8

0.6 0.8 1 1.2



Idea from Greg Hammett: A quasi-axisymmetric

stellarator without stellarator symmetry.

Inputs: axis shape R, (qﬁ] = 1+0.042cos(3¢),
Z,(9)=-0.042sin(3¢)-0.025cos(3¢),

n=-11, o(0)=-06

Results: (R/a =10)

|B| 0.2




Idea from Greg Hammett: A quasi-axisymmetric

stellarator without stellarator symmetry.

Aspect ratio 10 Aspect ratio 80
Fourier harmonics By, , in Boozer coordinates Fourier harmonics By, , in Boozer coordinates
0.12
—— m # 0, n = 0 (Quasiaxisymmetric) 0.014 { —— m = 0, n = 0 (Quasiaxisymmetric)
— m =0, n= 0 (Mirror) —— m =0, n# 0 (Mirror)
0.10 -

— m = 0, n # 0 (Helical)
Solid = cos(m6B — n{) modes
0.08 - Dashed = sin(m6 — n{) modes

0.012 4 — m = 0, n = 0 (Helical)
Solid = cos(m8 — ng) modes
0.010 4 Dashed = sin(m6 — n{) modes

0.06 - 0.008 -
0.006 -
0.04 -
0.004 -
0.02 7 0.002 -
0.00 - 0.000 -
0.0 . . . . 0.0 0.2 0.4 0.6 0.8 1.0
rla=vs rla=vs
N
1
-01
0.95 — =0
— ¢ = /6
09 pol—g-msm
—_ ¢ =w/2
0.7 0.8 0.9 1 1.1 1.2



The symmetry-breaking Fourier amplitudes
scale as predicted.
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Predicted scaling: 1/A?

BOOZ_ XFORM results for section 4.1: QA
BOOZ_XFORM results for section 4.2: QH
BOOZ_XFORM results for section 4.3: QA w/o stellarator symmetry
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The rotational transform computed by VMEC converges

to the value computed by the Garren-Boozer approach.

Difference in rotational transform ¢t between VMEC vs ODE

-
107" O
® l
1024 *
] : _
®
1073 5 N
' *
10~ E
] ® Section 4.1: QA @
| M Section 4.2: QH o
10-5 - X Section 4.3: QA w/o stellarator symmetry ®
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24



This method enables fast scans over

arameter space.

g.Scan over (R _,Z ,n | where magnetic axis shape is

C

Il clongation=3
( \ Bl clongation=4

1+R, _cos|4¢

()

Z. sin(4¢

274,560 solutions
generated in <30s on
my laptop.




Conclusion: The Garren-Boozer contstruction provides insight into
the space of quasisymmetric shapes, & useful 1nitial conditions for
stellopt.

There are many extensions to pursue.

« Fully map the landscape of possible 15-order quasisymmetric

shapes by considering more Fourier modes in the axis shape.
(How do I plot this?)

e Omnigenity.

e (Can we construct shapes with quasisymmetry imposed at a mid-
radius surface?

o 21d grder in distance from the axis.

« Connect to analysis of the difficulty of producing various plasma
shapes.

arXiv:1809.10246 https://github.com/landreman/quasisymmetry
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Extra slides



The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration
Uniform grid in ¢ with N points: ¢ =0, ¢,= 2%/(anp), - @ = ZE(N—l)/(anp).
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The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration
Uniform grid in ¢ with N points: ¢ =0, ¢,= Zn/(anp), - @ = Zn(N—l)/(anp).

Vector of N unknowns: (l, G((I)Z), G(¢3)» ey G(¢N))T
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The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration
Uniform grid in ¢ with N points: ¢ =0, ¢,= Zn/(anp), - @ = ZE(N—l)/(anp).
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The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration
Uniform grid in ¢ with N points: ¢ =0, ¢,= 2%/(anp), - @ = ZE(N—l)/(anp).

Vector of N unknowns: (l, G(¢2), G(¢3); ey G(¢N))T

N equations: impose ODE at d)l, ..y ¢N.

do . . . .
— — Do where D is a pseudospectral differentiation matrix.

do
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The ODE is solved with spectral accuracy using

pseudospectral discretization + Newton iteration
Uniform grid in ¢ with N points: ¢ =0, ¢,= 2%/(anp), - @ = ZE(N—l)/(anp).

T
Vector of N unknowns: (l, G(¢2), G(¢3), . G(ng))
N equations: impose ODE at d)l, )

-
do . . . .
— — Do where D is a pseudospectral differentiation matrix.

do

Error in iota

107
10'5_'

10-10 -

10-15 -

109

32



