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•  In quasisymmetric designs to date, optimization has been 
done using “textbook” optimization algorithms to minimize 
symmetry-breaking Fourier modes in B. 
–  Many local minima, so result depends on initial guess. 
–  Never sure you’ve found all the interesting regions of 

parameter space. 
–  Little insight as to the amount of freedom in the solution. 
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–  Little insight as to the amount of freedom in the solution. 

•  For a complementary approach without these shortcomings, 
here we extend Garren & Boozer (1991). 
–  Usually cited as a proof that quasisymmetry cannot be 

achieved to (a/R)3. 
–  Less well known that it contains a useful constructive 

procedure. 
–  Provides insight & initial conditions for stellopt. 
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Main idea of Garren-Boozer: expand position vector 
using Frenet frame, equate 2 representations of B. 
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Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal
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Dual	relations:			∇r = ∂r
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⎢
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⎦
⎥

−1
∂r
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× ∂r
∂ζ
,			cyclic	permutations.
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Garren & Boozer derived a 1D “Ricatti” ODE 
for quasisymmetry to O(a/R). 
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dσ
dζ

+ι
η 4

κ 4 +1+σ
2⎡

⎣
⎢

⎤

⎦
⎥−2η

2

κ 2 I2−τ
⎡
⎣

⎤
⎦=0

		κ ζ( ) = curvature,					τ ζ( ) = torsion,							I2 = current	density

			r r ,θ ,ζ( ) = r0 ζ( )+ rX1c ζ( )cosθn ζ( )+ r Y1s ζ( )sinθ +Y1c ζ( )cosθ⎡⎣ ⎤⎦b ζ( )+O r2( )
	ι = rotational	transform,										η = some	constant

		

X1c ζ( ) =η /κ ζ( )
Y1s ζ( ) =κ ζ( )/η
Y1c ζ( ) =σ ζ( )κ ζ( )/η



We have a new proof of existence & uniqueness of 
solutions, even though the GB ODE is nonlinear.  
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Theorem:		A	solution	exists	and	it	is	unique.		

	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 1( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 1( ) 	where	σ ζ( ) 	is	2π-periodic.
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Theorem:		A	solution	exists	and	it	is	unique.		

	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 1( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 1( ) 	where	σ ζ( ) 	is	2π-periodic.

	⇒ 	Numerical	solution	is	very	robust.



We can now precisely state the amount of 
freedom in 1st-order-in-r quasisymmetry. 

•  For every magnetic axis shape (2 functions of ϕ) with 
nonvanishing curvature, and 3 real numbers (   , σ(0), 
and I2), there is precisely 1 way to shape the near-axis 
surfaces consistent with quasisymmetry. 

–  For stellarator symmetry, σ(0) = 0. 

–  In the usual case of no current density on axis, then I2 = 0. 
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freedom in 1st-order-in-r quasisymmetry. 

•  For every magnetic axis shape (2 functions of ϕ) with 
nonvanishing curvature, and 3 real numbers (   , σ(0), 
and I2), there is precisely 1 way to shape the near-axis 
surfaces consistent with quasisymmetry. 

–  For stellarator symmetry, σ(0) = 0. 

–  In the usual case of no current density on axis, then I2 = 0. 

•  This solution may be quasi-axisymmetric or quasi-
helically symmetric. 

•  However many of these solutions have absurdly high 
elongation. 
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The ODE is solved with spectral accuracy using 
pseudospectral discretization + Newton iteration 
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		N =#	of	grid	points	in	ζ
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axis	shape	R0 φ( ) =1+0.045cos 3φ( ) , 		
					Z0 φ( ) =−0.045sin 3φ( ) ,

η =−0.9,								σ 0( ) =0

Inputs:	

Results:		(R/a	=	10)	
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axis	shape	R0 φ( ) =1+0.045cos 3φ( ) , 		
					Z0 φ( ) = −0.045sin 3φ( ) ,

B1 = −0.9,								σ 0( ) =0

Inputs:	

Results:		(R/a	=	10)	



If you generate coils to make a high-A surface, you 
actually often get a lower-A stellarator. 
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Quasi-helical symmetry example 
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axis	shape	R0 φ( ) =1+0.265cos 4φ( ) , 		
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axis	shape	R0 φ( ) =1+0.265cos 4φ( ) , 		
					Z0 φ( ) = −0.21sin 4φ( ) ,

B1 = −2.25,								σ 0( ) =0

Inputs:	

Results:		(R/a	=	40)	



Idea from Greg Hammett: A quasi-axisymmetric 
stellarator without stellarator symmetry. 
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axis	shape	R0 φ( ) =1+0.042cos 3φ( ) , 		
					Z0 φ( ) =−0.042sin 3φ( )−0.025cos 3φ( ) ,

η =−1.1,								σ 0( ) =−0.6

Inputs:	

Results:		(R/a	=	10)	



Idea from Greg Hammett: A quasi-axisymmetric 
stellarator without stellarator symmetry. 
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axis	shape	R0 φ( ) =1+0.042cos 3φ( ) , 		
					Z0 φ( ) = −0.042sin 3φ( )−0.025cos 3φ( ) ,

B1 = −1.1,								σ 0( ) = −0.6

Inputs:	

Results:		(R/a	=	10)	



The symmetry-breaking Fourier amplitudes 
scale as predicted. 

23 

		
S = 1

B0,0
Bm,n
2

m/n≠M/N
∑



The rotational transform computed by VMEC converges 
to the value computed by the Garren-Boozer approach.  
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This method enables fast scans over 
parameter space. 
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		E.g.	Scan	over	 R0c ,Z0s ,η( ) 	where	magnetic	axis	shape	is

		

R0 φ( ) =1+R0c cos 4φ( )
Z0 φ( ) = Z1s sin 4φ( )

274,560	solutions	
generated	in	<30s	on	
my	laptop.	

η



Conclusion: The Garren-Boozer contstruction provides insight into 
the space of quasisymmetric shapes, & useful initial conditions for 
stellopt. 

There are many extensions to pursue: 

•  Fully map the landscape of possible 1st-order quasisymmetric 
shapes by considering more Fourier modes in the axis shape. 
(How do I plot this?) 

•  Omnigenity. 

•  Can we construct shapes with quasisymmetry imposed at a mid-
radius surface? 

•  2nd order in distance from the axis. 

•  Connect to analysis of the difficulty of producing various plasma 
shapes. 
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Extra slides 
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The ODE is solved with spectral accuracy using 
pseudospectral discretization + Newton iteration 
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		Uniform	grid	in	φ 	with	N 	points:		φ1 =0,	φ2 =2π / Nnfp( ) , 	..., 	φN =2π N −1( )/ Nnfp( ).
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The ODE is solved with spectral accuracy using 
pseudospectral discretization + Newton iteration 
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