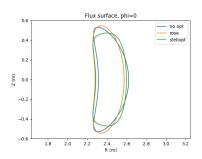
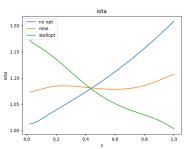
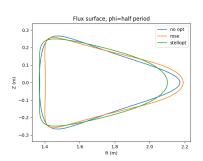
"Benchmarking" ROSE and STELLOPT

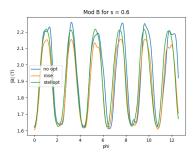
A. Bader

Wistell Meeting, Sep 21, 2018

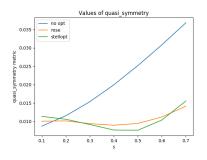

ROSE and STELLOPT have different strengths and weakness

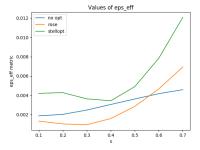

STELLOPT	ROSE
Parallelizable to number of	Parallelizable to subfunctions
targets Non-convex	only Non-convex
Susceptible to local minima	Susceptible to local minima
Source code available	Source code not yet available
EP metrics absent	Many EP metrics present
Coupled to PTSM3D, Regcoil	Coupled to ONSET
Individual contribution to penalty function is obtuse	Individual contribution to penalty function available with diagnostic
Output bloat	run Output paucity

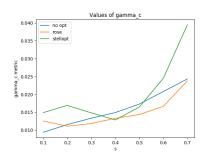

Four optimization cases, based off of the QHS46 configuration


- Optimize for QH only at s=0.6 (all runs have this optimization)
- Optimize for 'low ι ' vacuum configuration
- Optimize for the QHS46 configuration with $\beta \approx 2\%$, with realistic current profile
- Optimize for low ι at finite β
- Methodology
 - Run similar targets for both ROSE and STELLOPT
 - Run ROSE diagnostic on initial configurations and outputs to get values of various metrics
 - Current profiles come from SFINCS calculated by J. Schmitt
 - ROSE optimizations for profiles with current need to be redone

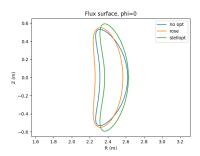
Optimize for QH

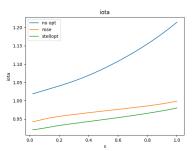


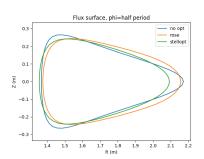


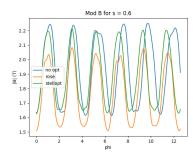


Optimize for QH

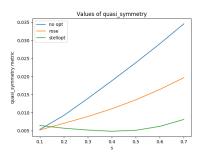


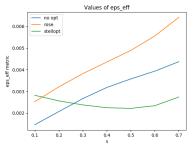


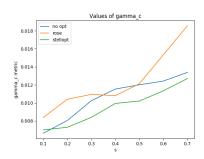


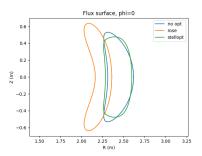

Rotational transform targeted to be 0.92 on axis and 0.98 at edge

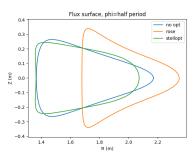
Optimize for low iota

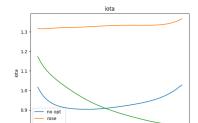


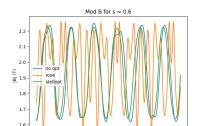




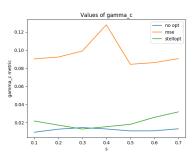

Optimize for low iota

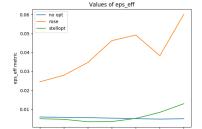


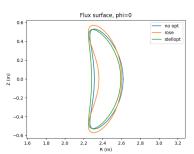


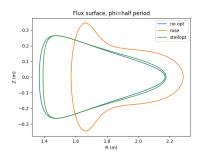


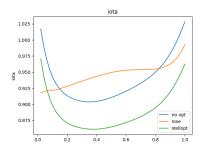
Optimize for low iota with finite current

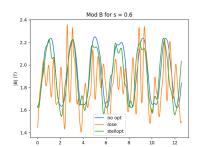




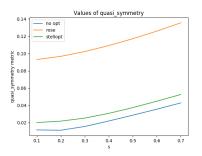

Optimize for low iota with finite current

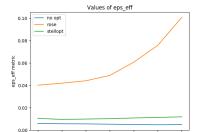


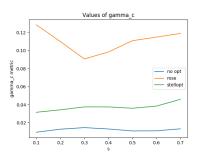




Optimize for QHS with finite current







Optimize for QHS with finite current

Rotational transform targeted to be 0.88 on axis and 0.95 at edge

Long list of caveats as to why this isn't an apples to apples comparison

- Optimization algorithms are different and both are non-convex and likely to fall into local minima
- Evaluation of the total target function is different
 - STELLOPT evaluate each metric individually and create a matrix for LM
 - ROSE evaluate a total χ^2 value as the sum of individual components
 - ROSE provides access to the unweighted values, STELLOPT does not
- Individual metric calculations are different as well
 - STELLOPT for QHS, divide by energy in all symmetric modes
 - ROSE for QHS, divide by energy in B_{00} mode

Long list of caveats as to why this isn't an apples to apples comparison (cont.)

- Availability of targets differs
 - STELLOPT for ι only allows the targeting of ι at individual flux surfaces
 - ROSE allows for constraint or full targeting of iota, and also can target monotonicity of ι profile
- Independent variables (R_{mn}, Z_{mn}) have different access
 - STELLOPT uninitialized coefficients are available but because of line-search don't tend to contribute when initially zeroed
 - ROSE uninitialized coefficients are unavailable

Basic conclusions from this study

- It's unsurprising that the results yield different equilibria convexity studies predict this is a likely outcome
- There might be use to passing equilibria back and forth between the two optimization codes
- ROSE appears to be more sensitive to starting weights than STELLOPT, could be a feature of the algorithm
- It's also easier to get information on the current weighting from ROSE than STELLOPT - area where STELLOPT needs improvement