Regcoil/Stellopt Fourier Winding Surfaces
with BFGS Quasi-Newton Algorithm

John C. Schmitt

Thanks to E. Paul for QN/BFGS Analytic Fortran Starter Code
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QN BFGS

Algorithm 6.1 (BFGS Method).
Given starting point x,, convergence tolerance € > 0,
inverse Hessian approximation H;
k <« 05
while ||V fk|| > €;
Compute search direction

P = —H{V fi;

Set x;+1 = X + oy pr where o is computed from a line search
procedure to satisfy the Wolfe conditions (3.6);
Define sy = x4y —xrand yy = V fie1 — V fis
Compute Hy ., by means of (6.17);
k <—k+1;
end (while)

Numerical Optimization, Nocedal and Wright
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The coupled STELLOPT/REGCOIL code

* Vary the winding surface via the Fourier series description
* Selection of results for BFGS and LM

* QHS (4 field period, <R,> =6 m, Aspect ratio = 6.7)
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STELLOPT can now manipulate the set of Fourier

coefficients that describe the coil winding surface

*  Winding surface is specified by a set of Fourier coefficients in toroidal space (6, {)

Coordinate system
* Superimpose Cartesian (X, Y, Z) and spherical (R, {, Z)

e 0 =atan (IZ?) Poloidal angle (in the R — Z plane)

+ ( =atan (2) Toroidal angle (in the X — Y plane)
The surface (2D manifold) is defined by the locus of point given by
R(6,0) = Z Rppnccos(mb +nd) + z Ry n,s sin(mB + nd)

72(0,0) = Z Zmnccos(mé +nd) + z Zmns sin(mb + nd)

e Stellarator symmetry is enforced for now

With stellarator symmetry, many modes must be 0: All: Ry, , s All: Zp, 1, -, and some (m,n)
combinations

The ability to allow non-stellarator symmetry has been implemented, but not tested

* For the work here:
Only one ‘target’: Minimize the residual |B,,,,, | on the target surface
Initial guess: A winding surface with a uniform separation (See previous presentations)
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Additional ‘recent updates’

* Quasi-Newton search
Shares some aspects of L-M (trust-region finite-difference scheme)

The change in the Jacobian between iterations is used to build up an
approximation of the (inverse) Hessian

* Version with analytic derivatives -> E. Paul
* Call to Finite Differencing schemes, parallelization -> J. Schmitt
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Preliminary comparison, limited spectrum

BFGS vs. L-M

* Not quite an ‘apples-to-apples’ comparison
Internal function call count is does not include backtrack.

» Backtrack calls tend to be in the range of (, )
 When close to the solution, backtracking calls are in the range of (,)

This is fixed in the plots below
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‘Small’” Test (BFGS & L-M)

Blue = Init. Surface, Orange = New Surface Bg‘e = Init. Surface, Orange = New Surface
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‘Medium’ Tests (BFGS)

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface
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'Large’ test (L-M) QHS

Blue = Init. Surface, Orange = New Surface Blue = ';‘it- Surface, Orange = New Surface
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. n this test, 1617 harmonics of the winding surface were allowed to be varied (M € [0,24], N € [—16,16]).

. x? vs Iteration count for several STELLOPT runs with different L-M control parameters, EPSFCN and FACTOR

. Initial winding surface (blue) and Final winding surface (orange). Upper right: Initial and Final surfaces at three toroidal angles in a %-field period.
Lower plots: The distance, in cm, between equivalent grid points of the Initial and Final winding surfaces, color-coded according bar on the right



'Large’ test (L-M) QHS

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface

o N »H (9]

* Initial winding surface (blue) and Final winding surface (orange). Upper right: Initial and
Final surfaces at three toroidal angles in a %-field period. Lower plots: The distance, in cm,
between equivalent grid points of the Initial and Final winding surfaces, color-coded

according to the bar on the right.
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Spectrum Observations
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Next steps

Fix fcnt implementation
Fix nprocs ‘bug/feature?’

Test with non-regcoil constraints
e Multiple issues w/ other components of stellopt/single vmec equilibrium logic
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Preliminary results

* The good

Many ‘better’ solutions are found

* The bad

L-M routine is extremely finicky
* The ugly

Repeated runs with identical starting points, input files and batch
submission requests arrive at different solutions
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Additional ‘recent updates’

* Equil type = ‘vmec2000 oneeq’

Static MHD VMEC equilibrium: Solve only on the 0t iteration and reuse for
all further iterations

Useful for coil-optimization loop where equilibrium is not changing
* Quasi-Newton search

Shares some aspects of L-M (trust-region finite-difference scheme)

The change in the Jacobian between iterations is used to build up an
approximation of the Hessian

* Include existing coil sets in calculation — discussed with Matt;
Should be straight-forward to implement; Add to list of goals?
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STELLOPT finds a better solutions (smaller residual |B,,,,-,;| on the target surface) when
manipulating the Fourier coefficients. A reduction by one order of magnitude compared to

the uniform winding surface.

Initial guess was a winding surface with uniform separation, Kzys= 2.82e6 A/m

1618 total harmonics were allowed to be varied

1618 identical targets of y5

Behavior exhibits a dependence on L-M optimizer run parameters of FACTOR / EPSFCN

Time limit reached
Casesb,c, f, g, i

“algorithm estimates that the relative error between x and the solution is at most xtol”
Casesa,d, e, h
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The largest reduction is for L-M options: FACTOR=25; EPSFCN = 1e-5

* This is the case shown in red ‘+’ symbols, see arrows
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Final iteration of highlighted case

Blue = Init. Surface, Orange = New Surface Blue = '?it- Surface, Orange = New Surface

* The solution after
the last iteration
is teller and (2)
narrower than the -2
starting position

* Recall: The
starting position
was a ‘uniform
distance’ away
from the plasma
boundary

A [cm]
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Results for QAS share some characteristics

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange ew Surface
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Previous results:
4, 5, or 6 Coils / field period

Uniform winding surface, 2.82e6 A/m

QHS46, |B| on LCFS
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6 Coils / field period
Fourier/Optimized winding surface

2.82e6 A/m on winding surface; 1.5 MA in each coil

2.5
QHS46, |B| on LCFS I
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Also see the interactive matlab figure:
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6 Coils / field period
Fourier/Optimized winding surface




Poincaré plot with field line following compared to VMEC

surfaces show agreement up to rational surface at edge

* VMEC vacuum surfaces agree well with field [ i S
I i n e f O I I OWi n g %k ( by ey e) 200 | " ree ll)r:)is;;daryw/(QHS46F)_Sérrc]c)':ils, (+)=B-Axis4o deg

AXxis is close
Shapes are qualitatively similar
VMEC’s ‘last closed flux surface’ encloses a small 100

200 r

€
stochastic region N
* Not unexpected
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Preliminary conclusions

* With the freedom to vary the coil winding surface, the
stellopt/regcoil search finds many solutions that produce a
reduction in Bnorm

Lots of ‘local’ solutions
Global solution not obvious

Adding additional constraints will change this behavior

* For at least one case (QHS), a set of 6 finite (filamentary) coils
produce satisfactory results (VMEC and Field-line following)
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Next steps

* Optimization
Make sure target, variable and L-M options are correct/consistent; Loose ends?

How do the coils change from their ‘optimal locations’ with Small, Medium, and Large
changes in target Kgzps

* On static winding surface (for small changes) and on varying one (via Fourier coeffs)
Add more constraints

* Code development
Target (penalize) plasmas with cusps
Target (RMS) current density

Coil-cutting (2D manifold contour map of a scalar gradient in 3D space)
Include existing coil sets in calculation

Q-N (*Partially complete)
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Extra slides
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The optimizer runs that demonstrated the most rapid descent
A) look a little different, B) are still evolving, and C) terminated because the solver was in a

local minimum (I think)

* The surfaces of the two

e = it Surface, Orange - New Surface B = Il Surface, Orange = New Suface REGCON G2 8 CHISa
branches that descend s . 1 1 [ T ]
more rapidly, but are *ﬂ;ii** f_t+++++++¢++ e
truncated, look a little ; o 7
different g T

* Dblue+’s (upper left) +++ Eb%ﬁui |

* red squares (lower left) 5 Z Tttt o

* Thered square descent I T
path has one extra step ‘ Z

— see lower right plots

Blue = Init. Surface, Orange = New Surface Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface

Blue = Init. Surface, Orange = New Surface

» The solver got stuck in

a local minimum?
» “algorithm estimates
that the relative
error between x and
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The optimizer branch that descends more slowly looks

vaguely like the ‘best’ case: Taller, but less narrow!

Blue = Init. Surface, Orange = New Surface
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Helicc Helical Stripes: The runs that descend very slowly has

very ¢ has very corrugated surfaces.

Blue = Init. Surface, Orange = New Surface Blue = Init, Surfae Ong = New Surface

REGCOIL CHI2 B CHISQ
T T T T

A [cm]
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Comparison of QHS46 Fourier Optimized coils
to HSX coils which have been scaled to the
same effective major radius as QHS46
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*  The (HSX) QHS configuration and coilset are scaled to match the same effective major radius as the
QHS46 configuration that | have been using for the STELLOPT/REGCOIL studies

Scale factor: 6.025006/1.211364 (~5)

*  The scaled QHS configuration was run through VMEC (fixed boundary)
Started with input.QHS _Rstart_1 513 32polmodes_18x24 axis_v2
Scaled the boundary. New filename: input.hsx_scaled_to_QHS46

* | forgot to scale the axis; VMEC detected this, found a new axis and proceeded to converge

Started with coils.hsx_1fil
Scaled the coils (with read_coils_scaled.m, a modified version of read_coils.m)
Coil data structure is stored in matlab data file: HSX_coils_scaled_to_QHS.mat

*  Slide 29: Short list of geometric quantities for the two configurations

*  Slides 30-31: |B| on the LCFS and a subset of the coils for this scaled configuration are compared to
the |B| and coils of QSH46 with the Fourier Optimized Winding Surface (FOWS)

e See additional slides: The individual coils are plotted on the same axes

Slide 32 — Final comments



A comparison of a few geometric quantities (from the

threedl output files)

HSX, scaled

* Aspect Ratio =  9.970152

* Mean Elongation =  3.851684

* Plasma Volume = 43.430845 [M**3]
* Cross Sectional Area =  1.147258 [M**2]

*  Normal Surface Area = 193.205616 [M**2]

* Poloidal Circumference=  4.693414 [M]

* Major Radius =  6.025005 [M] (from

Volume and Cross Section)

* Minor Radius = 0.604304 [M] (from

Cross Section)
°*  Minimum (inboard) R =  4.438649 [M]

*  Maximum (outboard) R = 7.525447 [M]

e Maximum height Z = 1.562752 [M]

QHS46, 6 Coils on FOWS

Aspect Ratio =  6.699959

Mean Elongation = 4.064947

Plasma Volume = 96.174025 [M**3]
Cross Sectional Area =  2.540507 [M**2]

Normal Surface Area = 293.721616 [M**2]
Poloidal Circumference=  7.033194 [M]

Major Radius =  6.025006 [M] (from
Volume and Cross Section)
Minor Radius =  0.899260 [M] (from

Cross Section)

Minimum (inboard) R =  4.108455 [M]
Maximum (outboard) R = 7.840492 [M]
Maximum height Z = 1.951591 [M]



Left: HSX (scaled) Right: QHS46




Left: HSX (scaled) Right: QHS46




