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• Introduction to shape optimization ideas

• Adjoint stellarator coil design

• Adjoint drift kinetic equation for neoclassical 
optimization

• Shape gradients for MHD equilibria
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Coil design

How to design coils to obtain desired plasma boundary?
How sensitive is a figure of merit to coil displacements?

Designing a stellarator requires shape optimization

MHD equilibria 
• Plasma boundary determines magnetic geometry 
• Figures of merit depend on boundary shape (e.g. neoclassical 

confinement, stability)
How should one design boundary to obtain optimal 

configuration?
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Describing derivatives with respect to shape

Unperturbed 
boundary

(")

Perturbed 
boundary

("$)
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Displacement 
(%&)

• Consider '((), a functional of surface,	(
• Surface is displaced by vector field +&

(, = &. + 0+& ∶ &. ∈ (
• Shape derivative of '(()

+' (; +& = lim,→.
' (, − '(()
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• Consider '((), a functional of surface,	(
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• For any +%, shape gradient, @, provides 
change to figure of merit, +'
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• Consider !(#), a functional of surface,	#
• Surface is displaced by vector field '(

#) = (+ + -'( ∶ (+ ∈ #
• Shape derivative of !(#)
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M. Landreman & E.J. Paul, Nuclear 
Fusion 58 (2018).

= for rotational transform
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M. Landreman & E.J. Paul, Nuclear 
Fusion 58 (2018).

Why is the shape gradient (=) 
useful?

• Local sensitivity information
• Quantifying engineering 

tolerances 
• Gradient-based optimization

= for rotational transform
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M. Landreman & E. J. Paul, Nuclear Fusion 58,      
076023 (2018).

Why is the shape gradient (=) 
useful?

• Local sensitivity information
• Quantifying engineering 

tolerances 
• Gradient-based optimization

Problem: shape gradient generally expensive to compute
• Surface # described by parameters, Ω
• Computing shape gradient of !(#) with finite difference 

parameter derivatives requires ≥ @A + 1 evaluations of !(#)



Adjoint method provides efficient shape gradient computation

C. Othmer, J. Math. Industry 4,  
(2014).

Inward for smaller drag
Outward for smallerdrag

• Figure of merit !(#) depends on solution 
to system of equations, L # = 0

• Goal: compute derivative of !(#) with 
respect to parameters Ω = {Ω)})+,

-.

• Adjoint method requires 1 additional 
solve (rather than ≥ 01 from finite 
differences)

• No noise from finite difference step size

Adjoint methods widely used in
computational fluid dynamics

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019 3



!" = $
• Goal: compute %&/%Ω for parameters Ω = {Ω*}*,-./

& = "01
• Expensive to get %&/%Ω with finite differences (≥ 34 + 6 solutions of system)

Adjoint method for a linear system
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• Introduction to shape optimization ideas

• Adjoint stellarator coil design

• Adjoint drift kinetic equation for neoclassical 
optimization

• Shape gradients for MHD equilibria



REGCOIL1 method for coil optimization

• Assume all coils lie on toroidal winding surface 

• Approximate coils by current density ! on 
winding surface

! = #×∇Φ

• Minimize '( = (field error)+,(coil complexity)

• Linear least-squares solution for Fourier-
discretized Φ

-. = /

1M. Landreman, Nuclear Fusion 57 (2017).

Plasma 
surface

Winding 
surface 

Given desired plasma and winding surface, obtain 
coil shapes with linear least-squares method
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Current potential provides coil shapes
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Plasma 
surface

Coils on winding 
surface 

Current potential provides coil shapes
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Optimize winding surface with adjoint method1 to improve coils

! "#$%&, ( "#$%& = !*&+,-+ + /#$%&!#$%& + /,*+#%01!,*+#%01
• !*&+,-+ = ∫3456786

9:; < ⋅ > ? → reproduce desired plasma surface

• !#$%& = (∫3CDE5 9
:; F:/H#$%&)

J/:→ improve engineering properties of coils

• !,*+#%01 = −L#$%&
J/M → minimize coil ripple, increase coil-plasma distance

Objective function
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Optimize winding surface with adjoint method1 to improve coils

! "#$%&, ( "#$%& = !*&+,-+ + /#$%&!#$%& + /,*+#%01!,*+#%01
• !*&+,-+ = ∫3456786

9:; < ⋅ > ? → reproduce desired plasma surface

• !#$%& = (∫3CDE5 9
:; F:/H#$%&)

J/:→ improve engineering properties of coils

• !,*+#%01 = −L#$%&
J/M → minimize coil ripple, increase coil-plasma distance

Objective function

Use adjoint method for analytic derivatives
• Optimization space: Ω = parameterization of "#$%&
• Solve linear adjoint equation

OPQ =
R!
R(

• Compute R!/RΩ from ( and adjoint solution Q

R!
RΩS

=
R!
RΩS (

+ QP TU
RV
RΩS

−
RO
RΩS

(
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Example - optimizing W7-X winding surface

Initial Optimized

Min. coil-coil distance [m] 0.22 0.27

Max curvature [m-1] 9.01 4.84

Max toroidal extent [rad.] 0.22 0.20

Mean normal field error 0.034 0.023

Actual W7-X winding 
surface (initial)

Optimized
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(c) Offset from plasma (d) Actual
!"#$ [T2m-1]

%&'((*+,-.; %0) = 3
45678

9(: %0 ⋅ < !"#$

Shape gradient indicates regions of large field error sensitivity

&'( = 3
4=8>?@>

9(: A ⋅ < B

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019 9



(c) Offset from plasma (d) Actual
!"#$ [T2m-1]

%&'((*+,-.; %0) = 3
45678

9(: %0 ⋅ < !"#$ &'( = 3
4=8>?@>

9(: A ⋅ < B

Shape gradient indicates regions of large field error sensitivity

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019 9



Outline

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019

• Introduction to shape optimization ideas

• Adjoint stellarator coil design

• Adjoint drift kinetic equation for neoclassical 
optimization

• Shape gradients for MHD equilibria



Stellarators must be optimized with neoclassical physics

• Semi-analytic reduced models historically used
• Effective ripple in 1/# regime ($%&&

'/() [V. Nemov et al., Phys. of Plasmas
12, 4622 (1999)]

• Low collisionality bootstrap model [K.-C. Shaing et al., Phys. of Fluids B
1, 148 (1989)]

Minimal )* needed for proper island divertor operation 

Geiger et al, Contributions to Plasma Physics 
50, 770 (2010).
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• Effective ripple in 1/# regime ($%&&

'/() [V. Nemov et al., Phys. of Plasmas
12, 4622 (1999)]

• Low collisionality bootstrap model [K.-C. Shaing et al., Phys. of Fluids B
1, 148 (1989)]

Minimal )* needed for proper island divertor operation 

Geiger et al, Contributions to Plasma Physics 
50, 770 (2010).
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Our approach – no assumption on Er or collisionality



Optimizing for neoclassical parameters

• Solve local drift kinetic equation (DKE) for !" with SFINCS1

#||% + '( ⋅ ∇!" − , !" = −'. ⋅ ∇/
0!1
0/

• Moments (particle flux, bootstrap current) computed from inner product with !"

Γ3 = 4Γ3, !" = 67∫ 9:#
4Γ3!"
!1

3
• Geometric parameters enter DKE through B (and several flux functions)

; =<
=>

;=>cos(CD − EF)

• Goal: compute 0H3/0;=>

1M. Landreman et al, Physics of Plasmas 21 (2014).
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Requires ≥ KLMNOP+1 solutions of DKE with finite differences
1M. Landreman et al, Physics of Plasmas 21 (2014).
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Optimizing for neoclassical parameters



• Solve DKE

!||# + %& ⋅ ∇)* − , )* = −%. ⋅ ∇/ 0)10/

2)* = 3

Adjoint approach allows efficient neoclassical optimization 
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Forward difference
Adjoint method

Adjoint approach requires 2 DKE 
solutions with SFINCS1

(CDEFGH + I for forward difference)

1E.J. Paul, et al, Submitted to J. Plasma Phys. (2019).

Adjoint approach allows efficient neoclassical optimization 
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Local magnetic sensitivity computed with adjoint approach
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!ℛ($; !$) = (ℛ!$ )

*ℛ
*$+,

= (ℛcos 01 − 34 )

Define magnetic sensitivity

Solve linear system for (ℛ



Local magnetic sensitivity computed with adjoint approach

!"#$ %; "% = ()*+ "% ,
!"Γ, %; "% = ()./ "% ,

)./[m-2s-1T-1]

"ℛ(%; "%) = )ℛ"% ,

3ℛ
3%45

= )ℛcos 9: − <= ,

Define magnetic sensitivity

Solve linear system for )ℛ

Bootstrap current sensitivity Particle flux sensitivity
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)*+[Am-2T-1]



Adjoint-based bootstrap current optimization
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• W7-X standard configuration (! = #/#% = 0.7)
• BFGS (quasi-Newton) method with backtracking line search 
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Computing MHD shape derivatives directly is expensive 

• MHD equilibrium with specified !(#) and % # and boundary &'()*+)

0 = ∇×0 ×0
42 − ∇!

• Goal: compute 45(&'()*+); 47), for any displacement 47

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019 15



• MHD equilibrium with specified !(#) and % # and boundary &'()*+)

0 =
∇×0 ×0
42

− ∇!

• Goal: compute 45(&'()*+); 47), for any displacement 47

• Perturbation with fixed % # and ! # determined from 89

409 = ∇× )(89×0

4! 89 = −89 ⋅ ∇!
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K 89 =
(∇×0)×409 + ∇× MN409 ×0
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Requires computing force balance for 
many (∼ QST) possible boundary 

perturbations



Computing MHD shape gradient with adjoint approach1

Take advantage of self-adjointness of MHD force operator 

!
"#$%&'%

()* (−- ./ ⋅ .1 + - .1 ⋅ ./ )

+
1
46!7#$%&'%

(1* 8 ⋅ (./9:1 ⋅ : − .19:/ ⋅ :) = 0

• Compute shape derivative (in terms of  ./) for figure of merit, f(=>?@AB@)

9C =>?@AB@; ./ = ∫"#$%&'%
()* ./ ⋅ F/ + ∫7#$%&'%

(1* 8 ⋅ ./G1
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Shape derivative with respect to any 
perturbation computed with one

additional force balance solve
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Magnetic well shape gradient computed with 2 VMEC1 calls 

0 0.5 1
/ 0

-1

-0.5

0

0.5

1

w
(
)!" = $

%&'()*(
+ , -. , / ,

!" < 0 favorable for stability
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Pressure 
perturbation

1S. Hirshman & J.C. Whitson, Physics of Fluids 26, 3553 (1983). 

@" = ABC ⋅ B
4E + /(,)



Magnetic well shape gradient computed with 2 VMEC1 calls 

!"
!" = $%& ⋅ %

4) + +(-)
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w
(
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1234564
7 - 89 - + -

/" < 0 favorable for stability

Adjoint perturbation satisfies
< => = ? + - (8@ABCDB)

=> ⋅ E = 0 (F@ABCDB)
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Pressure 
perturbation

1S. Hirshman & J.C. Whitson, Physics of Fluids 26, 3553 (1983). 



Coil shape gradient for ! computed with 2 VMEC calls 

"# $; "&' =)
*
+
',
-. /* ⋅ "&',

/*, shape gradient for coil k, gives 
perturbation "# for any "&',
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-8 9 8 :(8)
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28 ',

Adjoint perturbation satisfies
9 :6 = 0 (=>?@AB@)
"&', = 0 $*
"2D E = F(E)

Current 
perturbation
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,- . - /(-)
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67

Adjoint perturbation satisfies
? @< = 0 (BCDEFGE)
:H67 = 0 I3
:5J - = .(-)

NCSX coil shape gradient for K!

Current 
perturbation
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Conclusions

• Adjoint methods allow efficient computation of geometric derivatives
• Gradient-based optimization
• Sensitivity and tolerance analysis

• Several applications demonstrated for stellarator design
• Optimization of coil shapes [E.J. Paul et al, Nuclear Fusion 58 (2018)]
• Optimization of neoclassical quantities with adjoint drift kinetic equation 

[E.J. Paul et al, Submitted to J. Plasma Phys. (2019)]
• Shape gradients for fixed and free-boundary MHD equilibria [T. Antonsen

Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)]

• Ongoing work 
• Adjoint MHD shape gradient for other figures of merit
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• Secular terms of Φ fixed by total poloidal and toroidal current 

Φ = Φ#$ +
&'

2)
+
*+

2)
• Single-valued current potential is Fourier decomposed

Φ#$ =,

-.

Φ-.sin(3+ − 5')

• Our task: min
8

9: = 9;
: + <9=

:

• 9=
: = ∫#?@AB

C:D E: → Increase coil-coil spacing
• 9;

: = ∫
#GBHIJH

C:D K ⋅ M N → Fidelity in reproducing plasma surface

• Regularization parameter (<) chosen to meet engineering tolerance (e.g. maxE)

Optimization of current potential in REGCOIL
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QR
N

QK
N

S large

S small



Increasing !
"
→

Adjoint method for winding surface optimization

$ Ω,' Ω = )*
+ + -. !

+
− -012345

6/8

• )*+ → reproduce plasma surface
• !

+
→ improve engineering properties of coils

• 12345
6/8 → minimize coil ripple, increase coil-plasma 

distance

Optimization parameters Ω = {;<=> , ?<=@ }

min
E

$ s.t. FGHI = FGHI
JHKLMJ and min(O2345PQ5HRGH) ≥ OJHKLMJ

2345PQ5HRGH
Our goal:

Winding surface 
(varying)

Plasma surface 
(fixed)
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Initial Optimized Actual coil set
!"# 0.115 0.0711

$%&'( [m-3] 156 190

) * [MA/m] 2.21 2.16

max. [MA/m] 7.70 7.70
Mean / [m] 8.51 8.95 8.69
Max / [m] 8.84 9.14 8.74
Mean Δ1 [rad.] 0.190 0.179 0.198
Max Δ1 [rad.] 0.222 0.197 0.208
Mean 2 [m-1] 1.21 1.10 1.20
Max 2 [m-1] 9.01 4.84 2.59

3%&'(4%&'(5'6 [m] 0.223 0.271 0.261

W7-X coil optimization metrics
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Adjoint method for neoclassical optimization

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019

• Define adjoint equation with respect to the inner product between set of 
distribution functions (F = !"# #$"

%&'()*(&)

,, . =0
#

1234
!"#5"#
!6#

7
• Moments of !"# can be written as inner products (e.g. 8Γ#= !6#:;# ⋅ ∇>)

Γ# = ,, 8Γ# ?# = ,, 8?# @||,# = ,, 8@||,#
• Compute derivatives of FOM

BΓ#
BΩD EF$G

=
BΓ#
BΩD F

+
B,
BΩD

, 8Γ#

• F satisfies linear system, where E Ω and G Ω
E, = G

• B,/BΩ can be computed from finite differences
• Requires N linear solves of J×J system

E
B,
BΩD

=
BG
BΩD

−
BE
BΩ*

,



Adjoint method for neoclassical optimization
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• Alternatively, solve adjoint equation once 
• Adjoint property: !", $ = ", !& $

!& '() = *Γ,
• Use adjoint solution ('()) and forward solution (F) to compute gradient with 2

linear solves of -×- system
/Γ,
/Ω1 !234

= /Γ,
/Ω1 2

+ *Γ,,
/"
/Ω1

= /Γ,
/Ω1 2

+ !&'(), !67 /4
/Ω1

− /!/Ω1
"

= /Γ,
/Ω1 2

+ '(), /4
/Ω1

− /!/Ω1
"

• Compute solution to adjoint equation in addition to forward equation. 
- 9||; + <= ⋅ ∇'() − @ '() = *Γ,



10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

Benchmark with forward difference derivatives
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Generalization of self-adjointness relation

!
"#
$%& [−) *+ ⋅ *- + ) *- ⋅ *+] +

1
42!3#

$-& 4 ⋅ ][*+56- ⋅ 6 − *-56+ ⋅ 6

−
22
8
!
"#
$9 5:;,-

$5Φ+

$9
− 5:;,+

$5Φ-

$9
= 0

• Often toroidal current, :; 9 , specified rather than @(9) for 
equilibrium calculations 

• Allow perturbations for which  @(9) can vary
56+ = ∇× )(*+×6 − 5Φ+∇E

• 5@(9) and 5:; 9 coupled via generalized adjoint relation

Direct perturbation
*F ⋅ 4 ≠ 0
) *F = 0
5:;,+ = 0

Adjoint perturbation
*H ⋅ 4 = 0
) *H ≠ 0
5:;,- ≠ 0
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MHD free boundary shape gradients

!" !#$; & =(
)

*
$+
,- .) ⋅ !#$+

.), shape gradient for coil k, quantifies change in
figure of merit !" resulting from perturbation to 
coil shape, !#$+

Shape gradient for coils

∫12 ,
34 [−7 89 ⋅ 8: + 7 8: ⋅ 89] +

9
= ∫1> ,

34 (!@$A ⋅ !B1C − !@$C ⋅ !B1A)

+
2F
G *

12
,H !Φ9

,!JK,:
,H − !Φ:

,!JK,9
,H = 0

Direct perturbation
!@$A ≠ 0
7 8O = 0
!JK,9 = 0

Adjoint perturbation
!@$C = 0
7 8P ≠ 0
!JK,: ≠ 0

Free boundary adjoint relation
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Comparison between adjoint and direct iota shape gradient
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Comparison between adjoint and direct well shape gradient

!" = $
%&'()*(

+ , -. , / ,
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Comparison between adjoint and direct iota shape gradient
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!" = $
%&'()*(

+ , -(,)



Many applications of MHD shape gradients possible

Magnetic well 
• S for finite pressure magnetic well requires anisotropic pressure 

tensor

!" = $
%&
'() * + '

'+
,-
2 + 012

3

Confinement
• Neoclassical transport
• S for particle flux in 1/6 regime requires anisotropic pressure
• S for particle flux computed with solution of drift kinetic equation computed with 

“double adjoint” and addition of bulk force to equilibrium

!78 = $
%&
'() * + 9 ⋅ ∇+ 3

• S for breaking of quasi-symmetry requires addition of bulk force

!<= = $
%&
'() *(+)@ + @ + =

A
B C + + D +
A
B E + − 1
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Magnetic well figure of merit
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• Average radial curvature appears in ballooning mode potential energy1

• !" > 0 associated with stability 

!" = &'( ⋅ *+*,
-
= ./ 1223

*
*, 2456 + 23

"
• In a vacuum magnetic field, this reduces to 

!" = −9
:: ,
9: ,

• 9:: , <0 associated with MHD stability of stellarators 

1Friedberg, Ideal MHD (2014).


