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Designing a stellarator requires shape optimization

MHD equilibria
e Plasma boundary determines magnetic geometry
* Figures of merit depend on boundary shape (e.g. neoclassical
confinement, stability)
How should one design boundary to obtain optimal
configuration?

Coil design

How to design coils to obtain desired plasma boundary?
How sensitive is a figure of merit to coil displacements?
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Designing a stellarator requires shape optimization

MHD equilibria
* Plasma boundary determines magnetic geometry /L__A

* Figures of merit depend on boundary shape (e.g. neoclassical
confinement, stability)

How should one design boundary to obtain optimal \-// |

configuration?

Coil design

How to design coils to obtain desired plasma boundary?
How sensitive is a figure of merit to coil displacements?
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Describing derivatives with respect to shape

* Consider f(S), a functional of surface, S
» Surface 1s displaced by vector field o7
S, ={ry+edr:ry €S}
* Shape derivative of f(5)
() = f(S)

Sf(S;6r) = lim Unperturbed
€0 € boundary

()

Perturbed
. boundary

(S0)

Displacement
(o7)
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Describing derivatives with respect to shape

* Consider f(S), a functional of surface, S
» Surface 1s displaced by vector field o7
S, ={ry+edr:ry €S}
* Shape derivative of f(5)
() = f(S)

Perturbed
. boundary

(S0)

Sf(S;6r) = lim Unperturbed
. €20 € boundary
* Under assumption of smoothness (S)
5f(S;6r) = fdzx Sr-mG
S

Displacement

* For any &r, shape gradient, G, provides (671)

change to figure of merit, 0/
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Describing derivatives with respect to shape

G for rotational transform

* Consider f(S), a functional of surface, S
» Surface 1s displaced by vector field o7

S, ={ry+edr:ry €S}
 Shape derivative of f(S)

S )—f(S g
5F(S: 61) = limf( ) —f(9)
€—0 € M. Landreman & E.J. Paul, Nuclear
* Under assumption of smoothness Fusion 58 (2018).
5f(S;6r) = fdzx Sr-mG
S

* For any 6r, shape gradient, G, provides
change to figure of merit, 0/
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Describing derivatives with respect to shape

G for rotational transform

* Consider f(S), a functional of surface, S

» Surface 1s displaced by vector field o7
S, ={ry+edr:ry €S}

* Shape derivative of f(5)

S)—f(S 2
€—0 € M. Landreman & E.J. Paul, Nuclear
* Under assumption of smoothness Fusion 58 (2018).
. _ 2 ,
Of(S;0m) fsd xor-mng Why is the shape gradient (G)
e For any 61, shape gradient, G, provides useful?
change to figure of merit, &/ * Local sensitivity information
* Quantifying engineering
tolerances

* Gradient-based optimization
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Describing derivatives with respect to shape

Shape gradient S for .

>

Consider f (S), a functional of surface, S o
Surface 1s displaced by vector field

Problem: shape gradient generally expensive to compute
* Surface S described by parameters, ()

* Computing shape gradient of f(S) with finite difference
parameter derivatives requires = N + 1 evaluations of f ()

change to

, A\ - AN\

figure of merit, * Local sensitivity information
* Quantifying engineering
tolerances

* Gradient-based optimization
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Adjoint method provides efficient shape gradient computation

* Figure of merit f (x) depends on solution

to system of equations, L(x) = 0
Adjoint methods widely used in

ot . computational fluid dynamics
* Goal: compute derivative of f(x) with puiav wa ynami

respect to parameters () = {Qi}livzﬂl

* Adjoint method requires 1 additional
solve (rather than = N from finite

differences)
Inward for smaller drag
* No noise from finite difference step size Outward for smallerdrag
C. Othmer, J. Math. Industry 4,
(2014).
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Adjoint method for a linear system

Ax=b
N
* Goal: compute df /0 for parameters Q = {Q;};}
f=xTc

* Expensive to get df /9L with finite differences (= N + 1 solutions of system)
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Adjoint method for a linear system

Ax=b
N
* Goal: compute df /0 for parameters Q = {Q;};}
f=xTc

* Expensive to get df /9L with finite differences (= N + 1 solutions of system)
* Compute perturbations of linear system

0A L 7.0% _ b _() 0A
00, T e, a0, ' aQ BEI
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Adjoint method for a linear system

Ax=b
N
* Goal: compute df /0 for parameters Q = {Q;};}
f=xTc

Expensive to get df /0Q with finite differences (= Nq + 1 solutions of system)
Compute perturbations of linear system

0A L 7.0% _ b _() 0A

20, " 80, ~ aq, ' aQ BEI
* Compute derivative with chain rule
of ax . A S ob 04
O} ( mix> - (@) 0 ( mix>
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Adjoint method for a linear system

Ax=b
N
* Goal: compute df /0 for parameters Q = {Q;};}
f=xTc

Expensive to get df /0Q with finite differences (= Nq + 1 solutions of system)
Compute perturbations of linear system

0A . dx db oA
00, %0, ", T _( ) <aQ aQix)
Compute derivative with chain rule
d - 0X db O0A db O0A
asjz: =5, = () (aﬂi T a0, ) = (@) "0 ( anf‘)

* Solve adjoint equation

Alq =

* Get derivative with 2 solutions of linear system (x, q)

(b A
— X
0Q; 09
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* Introduction to shape optimization i1deas
* Adjoint stellarator coil design

* Adjoint drift kinetic equation for neoclassical
optimization

* Shape gradients for MHD equilibria

Elizabeth Paul Sherwood Fusion Theory Conference

April 15, 2019



REGCOIL! method for coil optimization

Given desired plasma and winding surface, obtain
coil shapes with linear least-squares method

Assume all coils lie on toroidal winding surface Winding
surface

* Approximate coils by current density K on
winding surface

K =nxVo

Minimize y? = (field error)+A(coil complexity)

Plasma
* Linear least-squares solution for Fourier- surface
discretized @
A® = b

IM. Landreman, Nuclear Fusion 57 (2017).
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Current potential provides coil shapes

K =nXxVo

Current Potential () [A]
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Current potential provides coil shapes

K =nXxVo

Current Potential (?) [A]
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Current potential provides coil shapes

K =nXxVo

Coils on winding
Current Potential (?) [A] surface

Plasma
surface
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Optimize winding surface with adjoint method! to improve coils

Objective function

f(Scoil: q)(Scoil)) = fplasma + acoilfcoil + aspacingfspacing

_ 2 2 :
fplasma = fSplasma d“x (B - n)“ — reproduce desired plasma surface

feo1 = (. Seoit d?x K2 /Acoil)l/ SN improve engineering properties of coils

_ 1/3 . oo : : :
fspacing = —V¢oj1 — minimize coil ripple, increase coil-plasma distance

E.J. Paul et al, Nuclear Fusion 58 (2018)
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Optimize winding surface with adjoint method! to improve coils

Objective function

f(Scoil: q)(Scoil)) = fplasma + acoilfcoil + aspacingfspacing

_ 2 2 :
fplasma = fSplasma d“x (B - n)“ — reproduce desired plasma surface

feo1 = (. Seoit d?x K2 /Acoil)l/ SN improve engineering properties of coils

_ 1/3 . oo : : :
fspacing = —V¢oj1 — minimize coil ripple, increase coil-plasma distance

Use adjoint method for analytic derivatives

* Optimization space: () = parameterization of Sy
* Solve linear adjoint equation

e Of
T — 7
49=3%

e Compute df /9 from @ and adjoint solution q

0 9 ob 04
f'=( f) rqT _o4
0Q; ~ \aQ;/, 0Q; 0Q;

E.J. Paul et al, Nuclear Fusion 58 (2018)
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Example - optimizing W7-X winding surface

B nitial
B Optimized

Initial [ Optimized
Min. coil-coil distance [m] |[0.22 0.27
Max curvature [m-!] 9.01 4.84
Max toroidal extent [rad.] [0.22 0.20
Mean normal field error 0.034 [0.023

Actual W7-X winding

surface (initial)

Optimized

Elizabeth Paul

Sherwood Fusion Theory Conference
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Shape gradient indicates regions of large field error sensitivity

L . |

-0.1 0 0.1 0.2 0.3 0.4 0.5
2m-1
Gz [TPm]

X3 Seoni ) = | d2xor-m G, = @y
S

Scoil
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Shape gradient indicates regions of large field error sensitivity

B (nitial
B Optimized

L . |

-0.1 0 0.1 0.2 0.3 0.4 0.5
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Gz [TPm]

X3 Seoni ) = | d2xor-m G, = @y
S

Scoil

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



* Introduction to shape optimization i1deas
* Adjoint stellarator coil design

* Adjoint drift Kinetic equation for neoclassical
optimization

* Shape gradients for MHD equilibria
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Stellarators must be optimized with neoclassical physics

Elizabeth Paul

Semi-analytic reduced models historically used

Effective ripple in 1/v regime (eg’f/fz) [V. Nemov et al., Phys. of Plasmas
12,4622 (1999)]

Low collisionality bootstrap model [K.-C. Shaing et al., Phys. of Fluids B
1, 148 (1989)]

Minimal ], needed for proper island divertor operation

Geiger et al, Contributions to Plasma Physics
50, 770 (2010).
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Stellarators must be optimized with neoclassical physics

Semi-analytic reduced models historically used

*  Effective ripple in 1/v regime (eg’f/fz) [V. Nemov et al., Phys. of Plasmas
12,4622 (1999)]

Low collisionality bootstrap model [K.-C. Shaing et al., Phys. of Fluids B
1, 148 (1989)]

Minimal ], needed for proper island divertor operation

Geiger et al, Contributions to Plasma Physics
50, 770 (2010).

Our approach — no assumption on E, or collisionality

Elizabeth Paul
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Optimizing for neoclassical parameters

Solve local drift kinetic equation (DKE) for f; with SFINCS!

(V||b +vg) Vi —C(f) = —vy - VY ]:ZI

Moments (particle flux, bootstrap current) computed from inner product with f;

wa 1

fm

W
Geometric parameters enter DKE through B (and several flux functions)

Ly = (Ty, f1) = ([ d®v

B = z B,,,cos(mf — nd)
mn

Goal: compute 01y, /0By

M. Landreman et al, Physics of Plasmas 21 (2014).
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Optimizing for neoclassical parameters

Solve local drift kinetic equation (DKE) for f; with SFINCS!
0fu

(vyb +vg) - Vfi — C(fy) = —vn 'WJW

Moments (particle flux, bootstrap current) computed from inner product with f;
[yfi
fu

W
Geometric parameters enter DKE through B (and several flux functions)

Ly = Ty, o) = [ d°v

B = z B,,,cos(mf — nd)
mn

Goal: compute 01y, /0By

Requires = N, 40511 solutions of DKE with finite differences

M. Landreman et al, Physics of Plasmas 21 (2014).
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Adjoint approach allows efficient neoclassical optimization

 Solve DKE

0
(v”b +vg) -V — C(f) = —vp 'leﬂ

I v

Lfy =S
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Adjoint approach allows efficient neoclassical optimization

 Solve DKE

0
(vib +vg) - Vfi = C(f1) = v 'leﬂ

} "
Lfy =S
 Solve adjoint DKE ({IL.f, g) = (f, ILTg))

LTg"v= (v - YY) fu

\

-(vyb +vg) -V = C(q"") = (WUm - V) fu
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Adjoint approach allows efficient neoclassical optimization

 Solve DKE

0
(vib +vg) - Vfi = C(f1) = v 'leﬂ

} "
Lfy =S
 Solve adjoint DKE ({IL.f, g) = (f, ILTg))

LTg"v= (v - YY) fu

\

-(vyb +vg) -V = C(q"") = (WUm - V) fu

* Derivative computed with (f; and qu/’)
aTy,

0Bmn

oT,, L[ 8S oL
aan f aan aan
1
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Adjoint approach allows efficient neoclassical optimization

* Solve DKE
0fum
b + Vfi—C = — Y
(v” VE ) 1) ==om VY57 0y  Adjoint approach requires 2 DKE
‘ solutions with SFINCS!
Lfy =S (Nmodes + 1 for forward difference)
 Solve adjoint DKE ((LLf, g) = (f, I[,Tg)) s |
===Forward difference
— || ——Adjoint method
Ltq"= (v - V) fiy Z
i £
X 4
(vyb+vg) -Vg'v —C(q"") = (Wm- V) 10|
(&)
 Derivative computed with (f; and g" ¥) = , /
aTy, 102 —_—
0B, 10 107 10°
B ( al“l/) > +< ( 0S oL )> Nmodes
0Bmn , '\0B,,;, 0B,
'E.J. Paul, et al, Submitted to J. Plasma Phys. (2019).

April 15,2019
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Local magnetic sensitivity computed with adjoint approach

Define magnetic sensitivity SR(B; 6B) = (SpbB)y,

0R

Solve linear system for S
0Bmn

= (Sgcos(mB — nd))y,
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Local magnetic sensitivity computed with adjoint approach

Define magnetic sensitivity SR(B; 6B) = (SpbB)y,
: 0R
Solve linear system for Sg = (Sgpcos(mb — nd))y,
0Bmn
Bootstrap current sensitivity Particle flux sensitivity

Sy, [Am2T] <10° Sr,, [m2s 1 T] <1020

8Jy(B; 8B) = (5, 5B) 5T (B; B) = (St 68|
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Adjoint-based bootstrap current optimization

« W7-X standard configuration (p = /¥ /1, = 0.7)
* BFGS (quasi-Newton) method with backtracking line search

Bt — Binit [T]

—_i
o
6)]

#¢ Initial value

-2
1 | [A m]
aL(D

107! w * s 0 | | | 1
0 2 4 6 8 0 02 04 06 038 %1073
lteration ¢/(2n/N P)
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* Introduction to shape optimization i1deas
* Adjoint stellarator coil design

* Adjoint drift kinetic equation for neoclassical
optimization

* Shape gradients for MHD equilibria

Elizabeth Paul Sherwood Fusion Theory Conference
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Computing MHD shape derivatives directly is expensive

* MHD equilibrium with specified p(y) and ¢(y) and boundary Spjasma

(VXB)XB
0= —
41
* Goal: compute 6f (Splasma; OT), for any displacement o7

Vp

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Computing MHD shape derivatives directly is expensive

MHD equilibrium with specified p(y) and ¢(y) and boundary Spjasma

(VXB)XB
0= —
41
Goal: compute df (Spjasma; OT), for any displacement or

Vp

Perturbation with fixed () and p(y) determined from &,
6p(§1) = —§1- Vp

Perturbed equilibrium with specified dr - n| Splasma satisfies

(VXB)X6B + VX(531)XB Unperturbed
F(¢&) = . —Vép(§1) =0 (Vplasma) boundary
§1-m=0r-n (Splasma) Perturbed
boundary
Displacement
($1)
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Computing MHD shape derivatives directly is expensive

MHD equilibrium with specified p(y) and ¢(y) and boundary Spjasma

(VXB)XB
0= —
41
Goal: compute 0f (Spjasma; OT), for any displacement or

Vp

Perturbation with

Requires computing force balance for
many (~ 10%) possible boundary
perturbations

Perturbed equilibrium with specified 67 - n] Splasma satisfies

(VXB)X :an( )XB V6p(E1) = 0 (Vytasma)

‘N =0r-n (Splasma)

F($,) =

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Computing MHD shape gradient with adjoint approach!

Take advantage of self-adjointness of MHD force operator

d3x (—F(§1) - & + F(&,) - &)

dzxn'(fl(sBz'B —525BlB)=O

* Compute shape derivative (in terms of &) for figure of merit, f(Splasma)

5f(5plasmai 51) = fV d’x & - Ay + fs d*x n- 1A,

plasma plasma

I'T. Antonsen Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)
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Computing MHD shape gradient with adjoint approach!

Take advantage of self-adjointness of MHD force operator

d3x (—F(§1) - & + F(&,) - &)

dzxn'(fl(sBz'B —525BlB)=O

* Compute shape derivative (in terms of §;) for figure of merit, {(Spjasma)
5f(5plasma; El) = fV

* Adjoint displacement ¢, satisfies

F(&,) = _Al(Vplasma)
§,om=0 (Splasma)

d3x El 'Al +f5 dzx n- €1A2

plasma plasma

I'T. Antonsen Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)
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Computing MHD shape gradient with adjoint approach!

Take advantage of self-adjointness of MHD force operator

d3x (—F(§1) - & + F(&,) - &)

dzxn'(fl(sBz'B —fZ5BlB)=O

* Compute shape derivative (in terms of §;) for figure of merit, {(Spjasma)
5f(5plasma; El) = fV

* Adjoint displacement ¢, satisfies

F(&,) = _Al(Vplasma)
§,om=0 (Splasma)

* Apply self-adjointness relation
41t 2

I'T. Antonsen Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)

d3x El 'Al +f5 dzx n- €1A2

plasma plasma

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Computing MHD shape gradient with adjoint approach!

Take advantage of self-adjointness of MHD force operator

d3x (— &+ F(&) - &1)

Shape derivative with respect to any
* Compute shape perturbation computed with one
additional force balance solve
of (Splasma;

’]((Splasma)
A,

* Adjoint displacement ¢, satisfies

F($,) = _Al(Vplasma)
§,m=0 (Splasma)
* Apply self-adjointness relation

= A
41T +2)

I'T. Antonsen Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)
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Magnetic well shape gradient computed with 2 VMEC! calls

1

0.5+
fw = f dy V') wip) 3 .
Vplasma =
fw < 0 favorable for stability 05!
1 ‘
0 0.5 1

Wi,

IS. Hirshman & J.C. Whitson, Physics of Fluids 26, 3553 (1983).
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Magnetic well shape gradient computed with 2 VMEC! calls

1

Pressure
0.5 perturbation
fw = f dy V') wip) 3 .
Vplasma =
fw < 0 favorable for stability 05!
-1 ‘
0 0.5 1
(0 (N

Adjoint perturbation satisfies
F(&;) = V(W(l/))) (Vplasma)
2-m=0 (Splasma)

0B, B
w = 47‘[

—— tw@)

IS. Hirshman & J.C. Whitson, Physics of Fluids 26, 3553 (1983).
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Magnetic well shape gradient computed with 2 VMEC! calls

1

Pressure
0.5 perturbation
fw = j dy V') wip) 3 .
Vplasma =
fw < 0 favorable for stability 05
-1 ‘
0 0.5 1
(0 (N

Adjoint perturbation satisfies
F(&;) = V(W(l/))) (Vplasma)
2-m=0 (Splasma)

-0.15  -041 -0.05 0 0.05
L R |
Gw

B, B
Gw = e —+w()

IS. Hirshman & J.C. Whitson, Physics of Fluids 26, 3553 (1983).
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Coil shape gradient for ¢t computed with 2 VMEC calls

5f(C;5rC)=2 dl Sy - 61¢,
k- Ck

S, shape gradient for coil k, gives
perturbation o f for any o1,

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Coil shape gradient for ¢t computed with 2 VMEC calls

0.1

fi =j dp w(@)  Zo.0s
|74

plasma

Wi,
5F(C: 61) = z dl Sy - 61¢,
k- Ck

S, shape gradient for coil k, gives
perturbation o f for any o1,
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Coil shape gradient for ¢t computed with 2 VMEC calls

0.1

A Current
perturbation

fi =f dp w(@) ZSoos
|74

plasma

0 0.5 1
Wi,

5F(C: 61) = z dl Sy - 61¢,

= JCy, Adjoint perturbation satisfies

F(§2) =0 (Vplasma)

S, shape gradient for coil k, gives 5re. =0 (Cp)
perturbation o f for any o1, 51 (k _
() =w(@)
I, tXO0B,
Sie == 2T
Ck
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Coil shape gradient for ¢t computed with 2 VMEC calls

0.1 \
A Current
perturbation
fi = j dyp w@)(y) §0.05
Vplasma

NCSX coil shape gradient for f, Oo/ \ - 1

.5

v,

Adjoint perturbation satisfies

F(§2) =0 (Vplasma)
6rc, = 0(Cy)

5l (Y) = w()

)

Ic, tX0B,
2T

Sk=

Ck

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Conclusions

* Adjoint methods allow efficient computation of geometric derivatives
* Gradient-based optimization
* Sensitivity and tolerance analysis

* Several applications demonstrated for stellarator design
* Optimization of coil shapes [E.J. Paul et al, Nuclear Fusion 58 (2018)]
* Optimization of neoclassical quantities with adjoint drift kinetic equation
[E.J. Paul et al, Submitted to J. Plasma Phys. (2019)]
* Shape gradients for fixed and free-boundary MHD equilibria [T. Antonsen
Jr., E.J. Paul et al, J. Plasma Phys. 85 (2019)]

* Ongoing work
* Adjoint MHD shape gradient for other figures of merit
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Optimization of current potential in REGCOIL

Secular terms of @ fixed by total poloidal and toroidal current

=0 +G(+19
- SV T on T 2n

Single-valued current potential is Fourier decomposed

dg, = Z D, nsin(mb — nd)
mn

Our task: mqin X2 = x&+ Ayz

* Xk = fs ) d?x K* - Increase coil-coil spacing
col

* Xp= fs | d?x (B - n)? - Fidelity in reproducing plasma surface
plasma

Regularization parameter (1) chosen to meet engineering tolerance (e.g. max K)

10

: Asmall

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Adjoint method for winding surface optimization
““ 0 K “ k Winding surface
(varying)

Increasing | |K| |2 —

Optimization parameters Q = {Ry,, Zn}

1/3 Plasma surface

f(Q' q’(ﬂ)) = )(1% + “K||K||2 —ayV. i (fixed)
e ¥ — reproduce plasma surface
* [|K]| | , — improve engineering properties of coils

1/3 . o : :
V.5 — minimize coil ripple, increase coil-plasma
distance
Our goal:
: target : i— il—pl
Min f 5.t Kmax = Kmag . and min(d©0-Plasmay > g2/ pesm

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



W7-X coil optimization metrics

Initial  Optimized Actual coil set

X3 0.115 0.0711

Veoil [m™] 156 190

||K||2 [MA/m] 2.21 2.16

max K [MA/m] 7.70 7.70

Mean [ [m] 8.51 8.95 8.69

Max [ [m] 8.84 9.14 8.74

Mean A{ [rad.] 0.190 0.179 0.198

Max A [rad.] 0222  0.197 0.208

Mean k [m!] 1.21 1.10 1.20

Max k [m!] 9.01 4.84 2.59
mm il [m] 0223  0.271 0.261
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Adjoint method for neoclassical optimization

Define adjoint equation with respect to the inner product between set of

distribution functions (F ={ flS}SN:IfeCIeS)

6= Y[t 2
W

Moments of f;; can be written as inner products (e.g. [s= fysVms - Vi)

[ =(F ) Qs=(F,Qs) Vs = (F'VII,S>
Compute derivatives of FOM

(i), = (0«
00/ s N0/, "\, S

F satisfies linear system, where L(Q) and S(Q)
LF =S§
dF /0() can be computed from finite differences
* Requires N linear solves of M XM system
L oF _(OS _OIL F)
aQ; \oQ; aQ

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



(

Elizabeth Paul

Adjoint method for neoclassical optimization

Alternatively, solve adjoint equation once
» Adjoint property: (LF,G) = (F, LT G)

IL-I- qFS = f‘S
« Use adjoint solution (g's) and forward solution () to compute gradient with 2
linear solves of M XM system

OFS) B (OFS) +<[~‘ 0F>
00/ | pes 0Q;/ > 00

oL

aT, 3S
= T I's -1 —
(aﬂi)F * <[L b (aﬂi 90,

(] e (B )
~ o,/ "\T " \Gq; a0

Sherwood Fusion Theory Conference

?))

Compute solution to adjoint equation in addition to forward equation.
(v b+ vg) - Vq's — C(q"s) =T

April 15, 2019



Benchmark with forward difference derivatives

=0 6VW /OB,
= OI'; /0B,
0Q; /0B,

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019



Generalization of self-adjointness relation

 Often toroidal current, I (), specified rather than ((y) for
equilibrium calculations
* Allow perturbations for which (1) can vary

SB, = VX(&,XB — §D,VQ)

« 6u(y) and 617 () coupled via generalized adjoint relation

1
J d’x [-F(§) - &, + F(&,) - &4] +4_7T d’xn-[§,6B, - B —§,6B, - B]
Vp Sp
21 g (51 dod, 5] d(SCDZ)
¢y, (7 2" ) It 4y
Direct perturbation Adjoint perturbation
&, m#0 2 m=0
F(§1) =0 F(§2) #0
517‘,1 =0 51T,2 * 0

Elizabeth Paul Sherwood Fusion Theory Conference April 15, 2019




MHD free boundary shape gradients

Shape gradient for coils

S, shape gradient for coil &, quantifies change in
figure of merit §f resulting from perturbation to 6f(61¢; C) = 2 dl Sy - 0T,
coil shape, 67, Kk

Free boundary adjoint relation

1
pr d*x [_F(ﬁ) ) fz + F(szz) ’ 61] + ;fVV d*x (5161 ) 5AV2 - 5]62 ) 5AV1)
diy dy
Direct perturbation Adjoint perturbation
5]C1 #* 0 6]C2 =0

F(§1) =0 F(§;) #0
§lp 1 =0 8lr, #0

2T
2 ay (5@1

_SCDZ
c Jy,
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82 [m‘z] Sl [m‘Q]

Sg [mgz]

Comparison between adjoint and direct iota shape gradient
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Comparison between adjoint and direct well shape gradient

fW=fV

plasma

dyp V') w@)

Fractional difference
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Comparison between adjoint and direct iota shape gradient

Direct
f = f W)
V

plasma

Shape gradient for f [m'a]

Shape gradient for fL
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Many applications of MHD shape gradients possible

Magnetic well

 § for finite pressure magnetic well requires anisotropic pressure
tensor

d [B?

fw=| dxw@) B3 + Uop

Vp dlp

Confinement
* Neoclassical transport
* § for particle flux in 1/v regime requires anisotropic pressure
* § for particle flux computed with solution of drift kinetic equation computed with
“double adjoint” and addition of bulk force to equilibrium

fve = | d>xw@)T - Vi),

Vp
 § for breaking of quasi-symmetry requires addition of bulk force
M
3 (F7) 6@ +1Gp)
fos =] xw@)F@) F@) ==y
Vp (W) () —1
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Magnetic well figure of merit

« Average radial curvature appears in ballooning mode potential energy!
* Ky > 0 associated with stability

K¢=<'€'a—r> =< S (2uop+Bz)>
P

o = \2Bzay .
* In a vacuum magnetic field, this reduces to
. _ VII (lp)
YT

« V" (y)<0 associated with MHD stability of stellarators

'Friedberg, Ideal MHD (2014).
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