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Optimization Design

1 How do you design an optimized stellarator?

2 Designing a stellarator: Optimization in practice
Neo-classical optimization
Energetic particle optimization - testing a metric
Optimizing for turbulence - designing a metric
Coils - Closing the loop
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Optimization Design

Stellarators are one of the earliest fusion concepts

• Lyman Spitzer invented
the stellarator concept
in 1953
• Early stellarators

suffered from large
neo-classical losses

– Trapped particles
precess

– Axisymmetry:
precession is toroidal

– Non-axisymmetry:
precession can have
a radial component
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Optimization Design

Good confinement is attainable in non-axisymmetric
systems

M. Landreman APS invited talk
2012

• If all maxima and minima of |B| align when following a field
line, bounce averaged radial drift is zero
• If |B| along field is close to sinusoidal, the configuration is

quasi-symmetric (or symmetric)

A. Bader Stochasticity in Fusion Plasmas Conference 3 / 19



Optimization Design

Equilibria are defined by boundaries, p (ψ), and J (ψ)

R (θ, ζ) =
∑
m,n

Rc,mncos (mθ − nζ)+Rs,mnsin (mθ − nζ)

Z (θ, ζ) =
∑
m,n

Zc,mncos (mθ − nζ)+Zs,mnsin (mθ − nζ)

• Boundaries given
in Fourier series

• Optimized
stellarators
typically go from
bean-like
cross-sections to
triangle-like
cross-sections
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Optimization Design

3D geometry allows optimization in novel ways

• Boundary→ Eq. solution→ Coord. transformations→ evaluation

Standard metrics
• Rotational transform, ι (ψ)
• Quasisymmetry metric, Q (ψ)

• Neo-classical transport, ε (ψ) , χ ∼ ε (ψ)

• Bootstrap current, Jbs (ψ)

• Magnetic well, aspect ratio, volume

New metrics
• Energetic particle confinement
• Turbulent transport
• Coil properties
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Optimization Design

Optimizing the boundary with modern computation

• Optimization codes include STELLOPT and ROSE
• Usually optimization schemes are modified gradient descents

Optimizer evaluates performance based on user selected penalty
functions, pi, targets ti and weights wi

F ({Rmn,Zmn}) =
∑

i

wi [pi ({Rmn,Zmn})− ti]
2

STELLOPT - S. A. Lazerson, ROSE - M. Drevlak NF 2018
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Optimization Design

Producing the configuration with coils

Typically coil design is done after an equilibrium is found
This requires iterations between the plasma equilibrium and a
coil code to find an adequate solution for both.

C. Zhu NF 58 (2017) M. Landreman NF 57 (2017)
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Optimization Design

Standard approach - solve for current potential on
external surface

Start with target and coil
surfaces

Calculate |B| on coil
surface

|B| on coil surface
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• This approach was used to generate
coils for W7-X and HSX
• Modern computational power allows

for improvements
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Optimization Design
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Optimization Design

Neo-classical optimization

Example - optimize to alter rotational transform profile
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Optimization Design

Energetic particle optimization - testing a metric

Energetic particle confinement is a key issue in
stellarators

• Prompt alpha particle losses can cause significant damage
to first wall
• Example - ARIES reactor study found 5% alpha energy

losses
• Alpha losses alone exceeded wall heat flux limits at several

places
• Evaluation of energetic particle confinement is usually

done with Monte-Carlo
– Computationally expensive
– Obscures physics mechanisms

Mau FST 2008
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Optimization Design

Energetic particle optimization - testing a metric

Possible metrics for energetic particle optimization

• εeff: standard optimization for neo-classical
transport

– Focuses on deeply trapped particles
– Less effect on particles near

trapped-passing boundary
• Quasi-symmmetry

– Perfect quasi-symmetry has no particle
losses

– Perfect quasi-symmetry is not actually
attainable

Henneberg NF 2019

• γc = arctan (vr/vθ)
– Seeks to reduce ratio of radial to poloidal drift by aligning J

contours
– Successful at optimizing QH

Nemov PoP 1999, Spong PoP 1998, Nemov PoP 2008
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Optimization Design

Energetic particle optimization - testing a metric

Best performance when optimization for Γc and
quasisymmetry

• All configurations scaled to 450 m3 and B0 = 5.6 T
• Γc ∼

∑
E/µ

∑
wells

∫
b arctan2 (vr/vθ) τb

• Prompt losses entirely eliminated in best performing case
(red); all losses eliminated inside s = 0.1
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Optimization Design

Energetic particle optimization - testing a metric

Particle losses at trapped passing boundary are
suppressed

• Most problematic region is near the trapped passing
boundary
• The best confinement case (red) sacrifices confinement of

deeply trapped particles to better confine particles near the
trapped passing boundary
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Optimization Design

Energetic particle optimization - testing a metric

εeff is not the correct metric for energetic particles

• Improvement of alpha
confinement in red
configuration despite
worse εeff across most
of the radius
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Optimization Design

Optimizing for turbulence - designing a metric

Using energy transfer as a turbulent transport metric

• Stable modes can provide an energy sink at instability
scales
• Stable modes couple to linear instability through 3-wave

nonlinearity.
– Heat flux is inversely proportional to a correlation time, τ
– Q ∝

∑
i,j,k

1
k2
⊥

γk
τ , τijk = 1/i (ω∗

i − ωj − ωk)

– Key idea: maximize correlation lifetimes between unstable
and stable modes

• Geometry and plasma profiles determine the ω values

C.C. Hegna PoP 25 (2018) 022511
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Optimization Design

Optimizing for turbulence - designing a metric

Turbulence metric reproduces non-linear gyrokinetics

• Metric anti-correlated with
gyrokinetic Q as predicted
• Resonances of 1/τ at

specific kx, ky cause
improved performance
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Optimization Design

Coils - Closing the loop

Incorporating coil codes directly into equilibrium
optimization

• Increases search space considerably
• May require better optimization algorithms
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Optimization Design

Coils - Closing the loop

Designing metrics for ease of coil design
• Sensitive locations for coils correspond to areas of high

second principal curvature of the boundary
• These areas can be directly targeted in optimization codes
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Optimization Design

Coils - Closing the loop

We are ready to design the next generation of
optimized stellarator

• Stellarator optimization has been successfully
implemented on HSX and W7-X

– Optimizer codes manipulate plasma boundaries and
evaluate the resulting equilibria

– Separate codes determine coil shapes

• Using 3D nature of stellarators we can optimize
configurations in completely new ways

– New metrics for energetic particle confinement and
turbulent transport are being tested and developed

– Coil metrics or coil design itself can be included in the
physics optimization

– Development of better optimization algorithms and
boundary representations is ongoing
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Optimization Design

Coils - Closing the loop

Extra slides
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Optimization Design

Coils - Closing the loop

Non-resonant divertors resilient to plasma evolution
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No difference is noticeable with shape changes from plasma!
A. Bader PoP 24 (2017) 032506
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Optimization Design

Coils - Closing the loop

Coil sensitivity and divertor locations

• Shape gradient calculations indicate regions of high
sensitivity
• Sensitive regions are far away from desirable divertor

locations
E.J. Paul NF 58 (2018) 076015; M. Landreman NF 58 (2018) 076023
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