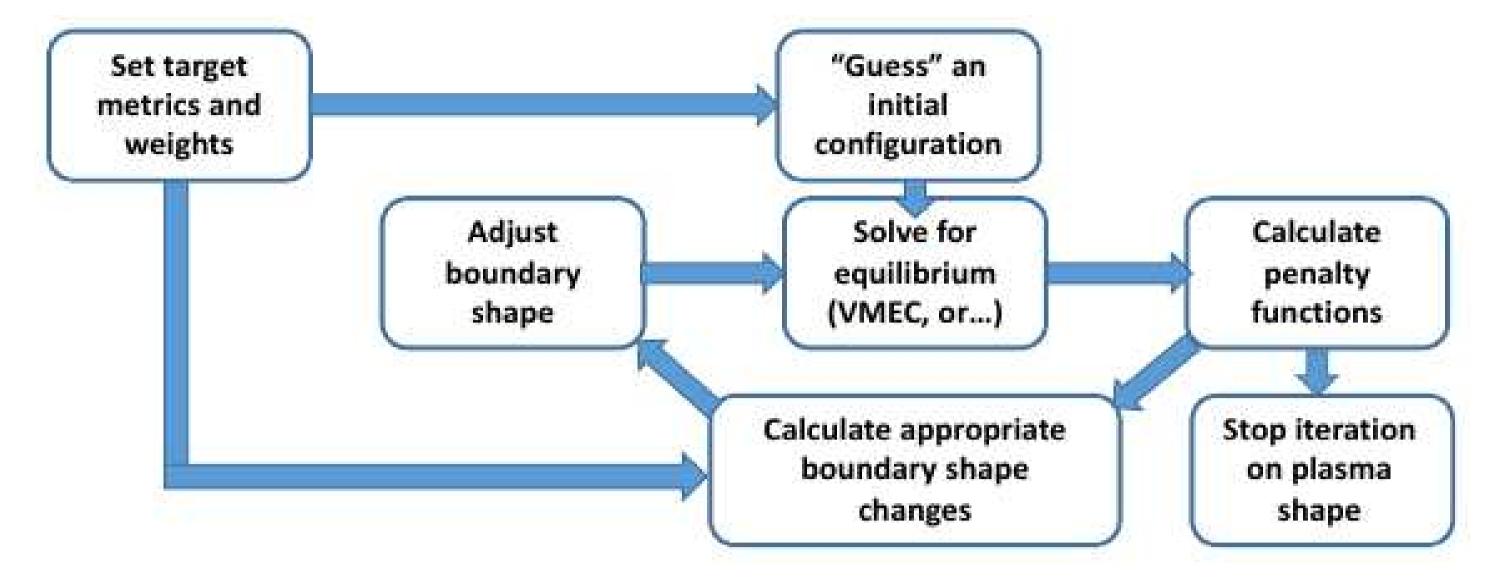
Pitfalls and Paths Forward for Stellarator Optimization

A. Bader, M. Drevlak², B.J. Faber, H. Frerichs, C.C. Hegna, J.C. Schmitt³

University of Wisconsin-Madison, Madison, WI
2) IPP-Greifswald, Germany 3) Auburn University, Auburn, AL

OPTIMIZATION IN STELLARATORS

• Configuration optimization focuses on manipulating plasma boundary



• Boundary given as Fourier series

$$R(\theta, \zeta) = \sum_{m,n} R_{mn} \cos(m\theta - n\zeta); \ Z(\theta, \zeta) = \sum_{m,n} Z_{mn} \sin(m\theta - n\zeta)$$

- Fourier mode representation convenient for equilibrium codes
- R_{mn}, Z_{mn} are independent variables, typically on order ~100 are used
- With equilibria solutions, penalty functions (p_i) are calculated and compared to targets (t_i) with weights (w_i)

$$F(\{R_{mn}, Z_{mn}\}) = \sum w_i (p_i - t_i)^2$$

- Optimization codes include STELLOPT[1] and ROSE[2]
- Any quantity calculable from an equilibrium can be optimized
- -Rotational transform profile: $\iota(\psi)$
- $-\mathbf{Quasi\ symmetric\ metric:}\ Q\left(\psi\right)$

$$Q_{qa} = \sum_{m \neq 0} B_{mn}^2 / B_{00}^2; \ B(\psi, \theta, \zeta) = \sum_{m,n} B_{\psi,m,n} \cos(m\theta - n\zeta)$$

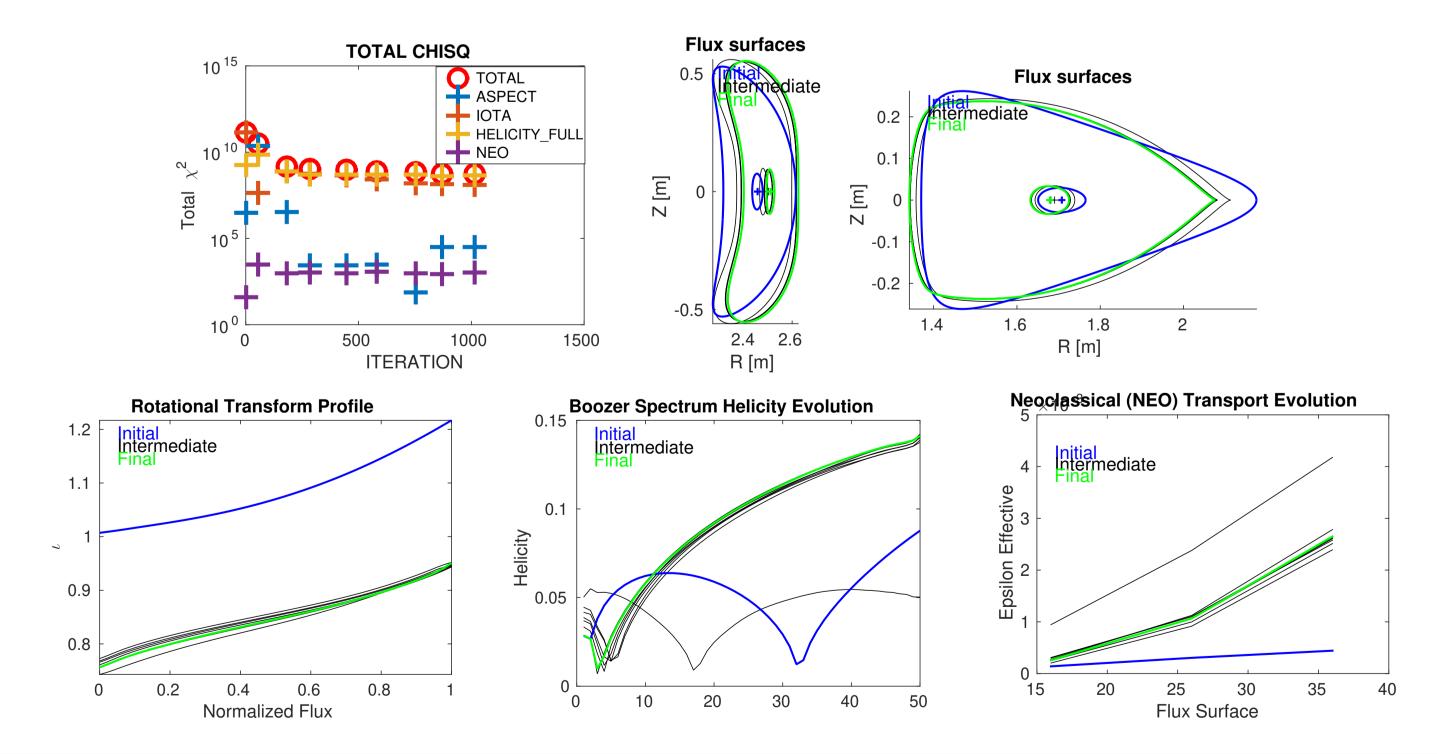
is the target for quasi-axisymmetry

- -Neo-classical transport: $\epsilon_{\mathrm{eff}}\left(\psi\right)$
- -Other quantities include: magnetic well, stability considerations, aspect ratio, alpha confinement, turbulent transport (see Hegna talk) etc.
- Coil optimization is usually separate from configuration optimization
- -Machine design requires iteration between coil codes and configuration optimization codes
- -Integration of coils into optimizers complicates problems

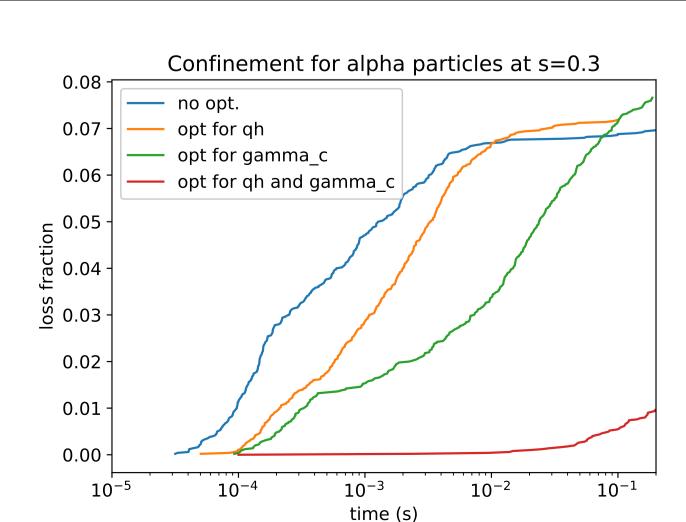
OPTIMIZATION ALGORITHMS

- Optimizations typically use gradient descent methods
- Calculate $\partial p_i/\partial x_j$, where $x_j \in \{R_{mn}, Z_{mn}\}$
- Common methods: Levenberg-Marquardt, Brents, Quasi-Newton

Optimization for ι , quasi-helical symmetry, neoclassical transport, and aspect ratio using Levenberg-Marquardt algorithm in STELLOPT

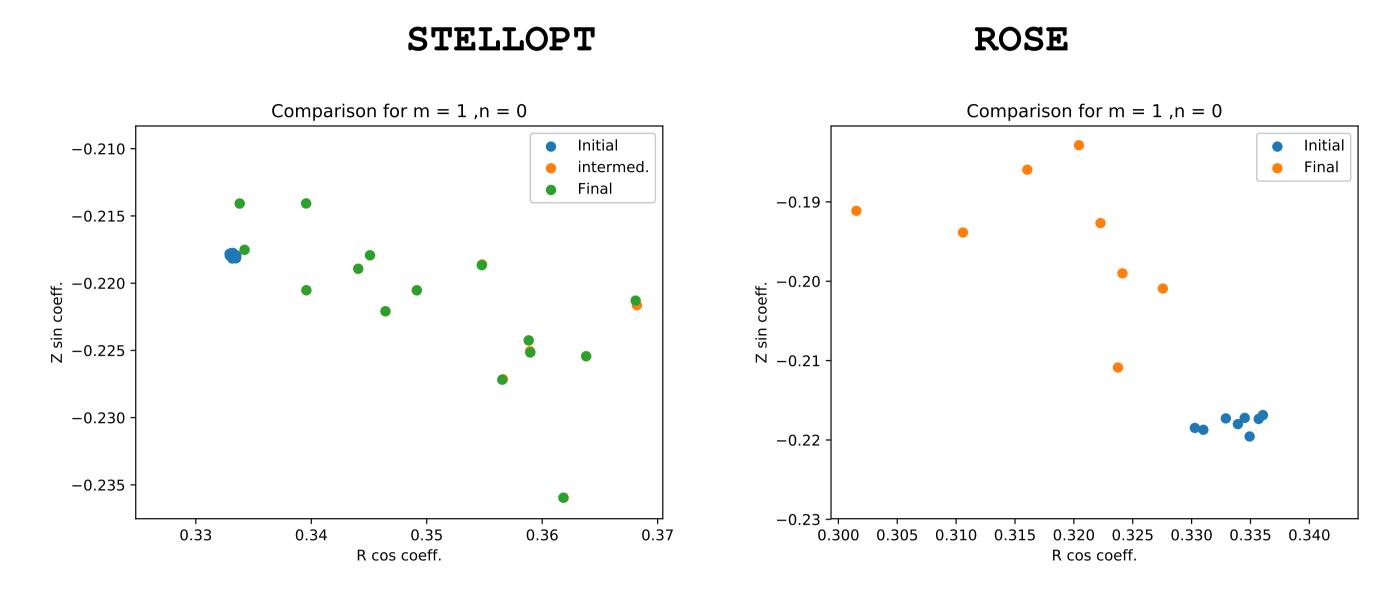


- Example: optimization for energetic particle confinement
- Optimizer finds solution with low energetic particle losses
- Best case (red): optimizer successfully improves both quasi-symmetry and Γ_c , an energetic particle metric
- Results: losses greatly reduced near trapped-passing boundary

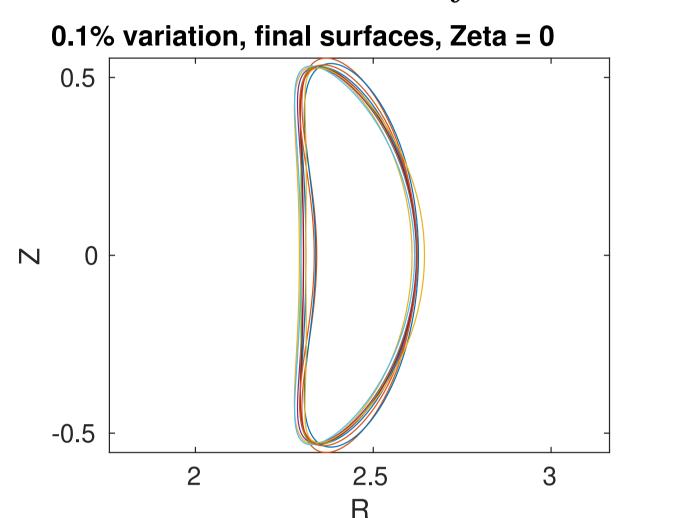


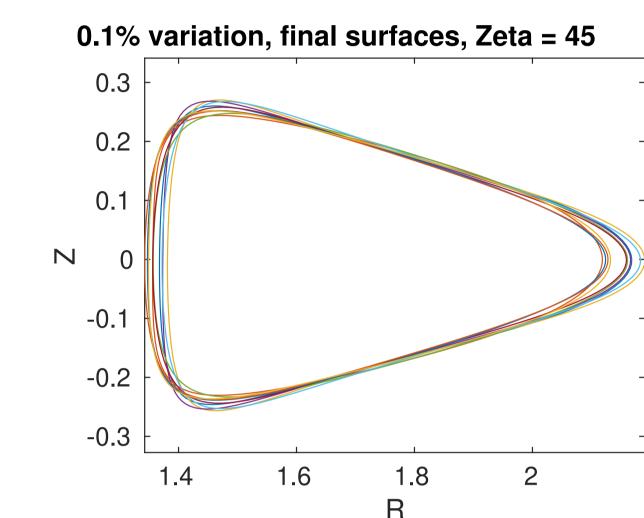
PITFALLS

- Search space is non-Convex
- -Initialize with small differences in starting coefficients but exact same targets and weights
- -Final solutions wind up in different places
- -Local minima abound

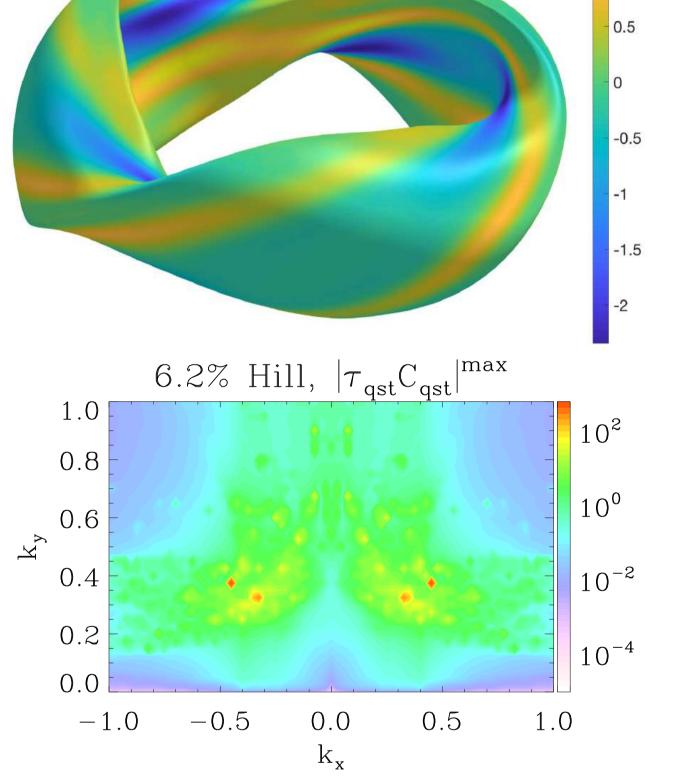


Initial and final values of $R_{m=1,n=0}$ and $Z_{m=1,n=0}$ modes when all coefficients are varied by a small random value less than 1%





- Final configurations are different
- Our optimization algorithms do not find global minima
- Variables for optimization (Fourier modes) are global parameters
- Fourier coefficients obscure effects of boundary deformations
- Shape gradients can often inform the desired locations for variations [3]
- ullet Local variations are desirable
- Some metrics (turbulent coupling coefficients) attempt to optimize resonant features
- Landscape is dotted by local minima, $\stackrel{>}{\searrow}$ how to find the best one?



Shape gradient S for ι

PATHS FORWARD

- Improve optimizers
- -More robust routines, resistant to local minima
- -Recipes for improved optimization how can we use our tools better?
- Local boundary representations
 - -Move away from Fourier modes for boundary representation
 - -Possibility: local 2D splines fit to boundary points
 - -New algorithms to solve for equilibria (replacement for VMEC)
 - -Alternative local equilibrium calculations
 - -Alternative vary points on boundary and then fit to a Fourier series with arbitrary precision
- SIMONS collaboration on improving algorithms and boundary representations is greatly appreciated

REFERENCES

- [1] Lazerson, S.A. STELLOPT Computer
- Software
- [2] Drevlak, M. Nuc. Fus. **59** (2019)
- [3] Landreman, M. Nuc. Fus. **58** (2018)

ACKNOWLEDGMENTS

Work funded by UW2020 135AAD31136 and DE-FG02-93ER54222