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OPTIMIZATION IN STELLARATORS PITFALLS

e Configuration optimization focuses on manipulating plasma boundary e Search space is non-Convex
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e Fourier mode representation convenient for equilibrium codes R cos coeff R cos coe.

® Ry, Zmn are independent variables, typically on order ~100 are used Initial and final values of R, ,— and Z,_;,—o modes when all coefficients

e With equilibria solutions, penalty functions (p;) are calculated and com- are varied by a small random value less than 1%
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e Any quantity calculable from an equilibrium can be optimized
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is the target for quasi-axisymmetry e Final configurations are different
—Neo-classical transport: e (v)) e Our optimization algorithms do not find global minima
—Other quantities include: magnetic well, stability considerations, aspect
ratio, alpha confinement, turbulent transport (see Hegna talk) etc.
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e Coil optimization is usually separate from configuration optimization e Variables for optimization (Fourier
—Machine design requires iteration between coil codes and configuration modes) are global parameters
optimization codes e Fourier coefficients obscure effects of
—Integration of coils into optimizers complicates problems boundary deformations

e Shape gradients can often inform the
desired locations for variations [3]

OPTIMIZATION ALGORITHMS e L.ocal variations are desirable
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e Local boundary representations
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—Move away from Fourier modes for boundary representation

j / - —Possibility: local 2D splines fit to boundary points
| - —New algorithms to solve for equilibria (replacement for VMEC)

— Alternative - local equilibrium calculations

w

Helicity
N

09 r 0.05 r

Epsilon Effective

—

0 0.2 0.4 0.6 0.8 1 0 ' ' ' ' 15 20 25 30 35 40
Normalized Flux Flux Surface

0.8

o

— Alternative - vary points on boundary and then fit to a Fourier series
with arbitrary precision

e Example: optimization for energetic onfinement for aloha particles at s=0.
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