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OPTIMIZATION IN STELLARATORS

•Configuration optimization focuses on manipulating plasma boundary

•Boundary given as Fourier series

R (θ, ζ) =
∑

m,n

Rmncos (mθ − nζ) ; Z (θ, ζ) =
∑

m,n

Zmnsin (mθ − nζ)

•Fourier mode representation convenient for equilibrium codes

•Rmn, Zmn are independent variables, typically on order ∼100 are used

•With equilibria solutions, penalty functions (pi) are calculated and com-
pared to targets (ti) with weights (wi)

F ({Rmn, Zmn}) =
∑

i

wi (pi − ti)
2

•Optimization codes include STELLOPT[1] and ROSE[2]

•Any quantity calculable from an equilibrium can be optimized

–Rotational transform profile: ι (ψ)

–Quasi symmetric metric: Q (ψ)

Qqa =
∑

n 6=0

B2
mn/B

2
00; B(ψ, θ, ζ) =

∑

m,n

Bψ,m,ncos(mθ − nζ)

is the target for quasi-axisymmetry

–Neo-classical transport: ǫeff (ψ)

–Other quantities include: magnetic well, stability considerations, aspect
ratio, alpha confinement, turbulent transport (see Hegna talk) etc.

•Coil optimization is usually separate from configuration optimization

–Machine design requires iteration between coil codes and configuration
optimization codes

– Integration of coils into optimizers complicates problems

OPTIMIZATION ALGORITHMS

•Optimizations typically use gradient descent methods

•Calculate ∂pi/∂xj, where xj ∈ {Rmn, Zmn}

•Common methods: Levenberg-Marquardt, Brents, Quasi-Newton

Optimization for ι, quasi-helical symmetry, neoclassical transport, and
aspect ratio using Levenberg-Marquardt algorithm in STELLOPT
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Neoclassical (NEO) Transport Evolution

•Example: optimization for energetic
particle confinement

•Optimizer finds solution with low en-
ergetic particle losses

•Best case (red): optimizer success-
fully improves both quasi-symmetry
and Γc, an energetic particle metric

•Results: losses greatly reduced near
trapped-passing boundary 10−5 10−4 10−3 10−2 10−1

time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

lo
ss

 fr
ac

tio
n

Confinement for alpha particles at s=0.3
no opt.
opt for qh
opt for gamma_c
opt for qh and gamma_c

PITFALLS

•Search space is non-Convex

– Initialize with small differences in starting coefficients but exact same
targets and weights

–Final solutions wind up in different places

–Local minima abound

STELLOPT ROSE
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Initial and final values of Rm=1,n=0 and Zm=1,n=0 modes when all coefficients
are varied by a small random value less than 1%
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•Final configurations are different

•Our optimization algorithms do not find global minima

•Variables for optimization (Fourier
modes) are global parameters

•Fourier coefficients obscure effects of
boundary deformations

•Shape gradients can often inform the
desired locations for variations [3]

•Local variations are desirable

•Some metrics (turbulent coupling coef-
ficients) attempt to optimize resonant
features

•Landscape is dotted by local minima,
how to find the best one?

PATHS FORWARD

• Improve optimizers

–More robust routines, resistant to local minima

–Recipes for improved optimization - how can we use our tools better?

•Local boundary representations

–Move away from Fourier modes for boundary representation

–Possibility: local 2D splines fit to boundary points

–New algorithms to solve for equilibria (replacement for VMEC)

–Alternative - local equilibrium calculations

–Alternative - vary points on boundary and then fit to a Fourier series
with arbitrary precision

•SIMONS collaboration on improving algorithms and boundary represen-
tations is greatly appreciated
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