Scoping studies for the divertor design in optimized stellarators
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Introduction Targets for equilibrium optimization (ROSE) -. Poster by A. Bader
= Control of particle and energy exhaust is essential for successful * Quasi symmetry (at s = 0.6) * Presence of magnetic well
operation of next step magnetic confinement devices » Energetic particle confinement (y_ats = 0.2, 0.4, 0.6) e Constraint € _; < 0.01

" Presently, however, even a post-processing approach is not well
established In stellarator optimization VMEC i

= Development of reliable tool chain for assessment of divertor equitibrium A
performance is ongoing * 121 surfaces L}
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_ _ o _ Coil implementation (FOCUS) initialized
Plasma boundary modeling requires magnetic field information from REGCOIL with offset 22 cm

beyond the last closed flux surface (VMEC boundary), but also
needs to take into account finite 3 effects
— combine information inside and outside LCFS

* Minimum coll to plasma (VMEC) boundary
separation: 19 cm

Vector potential on cylindrical grid (BMW)

Scoping study based on field line diffusion * VVolume integral over currents in VMEC domain

 Offset surfaces from VMEC boundary e Mesh resolution: 192 x 192 x 65

Field Line Analysis and Reconstruction Engine (FLARE)

* 3D B-Spline based interpolation of vector potential

* Field line tracing dR s Bp dZ Bz
dp — T B, dp " By

Outlook

* Optimize divertor plate geometry for minimal particle and heat

loads (trade-off between flexibility in magnetic configuration for
| research stellarators and performance for reactor type
e stellarators)

* Baffles for neutral gas compression important for particle
exhaust (pumping) and core contamination - EMC3-EIRENE
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150 - Divertor load modeling (EMC3-EIRENE) requires 3D finite flux-tube mesh
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. - Reconstruction of field lines from interpolation within finite flux tube
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