A US Intermediate Scale Stellarator Experiment

A. Bader, D.T. Anderson, B. Geiger, C.C. Hegna, O. Schmitz

July 22, 2019, Madison WI

uuuuuuuuuuuuu

>>>>>>>>



Assessing the stellarator as an option for a fusion pilot plant (FPP) requires retiring
open risks and boosting the advantages of the concept
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Four initiatives to foster an aggressive qualification strategy for the stellarator

« Domestic facility (A. Bader): “A U.S. Intermediate Scale Stellarator Experiment”

« International collaboration (S. Lazerson): “International Stellarator Research in
Support of a Low Capital Cost Pilot Plant”

+ Technology and Concept Innovation (M. Zarnstorff): “Initiative to Simplify
Optimized Stellarators and Test Key Properties”

« Stellarator Pilot Plant (D. Gates): “The Stellarator Path to a Low Cost Pilot Plant”

« Strategic white paper as general background (A. Boozer): “Strategic
Implications of the Stellarator for Magnetic Fusion” (no talk)



A US Intermediate Scale Stellarator Experiment

e The U.S. should have a strong stellarator program

— Stellarators offer a path to a low recirculating power, ignited reactor
— Advances in last decades have demonstrated success of stellarator optimization
— Opportunity for a leadership position in the worldwide program
e Advantages of the stellarator in moving towards a pilot plant
— Intrinsically steady state
No need for current drive/profile control
No disruptions or runaway electrons for low current stellarators
Density limits set by simple power balance; bigger design space at high density
@ Faster damping of energetic particles
@ Improved divertor operation/edge-radiation
@ Stable detached discharges observed on W7-X and LHD

Opportunity for optimized turbulent transport by design
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' Clear Opportunity Exists for US Leadership '

e The US has been instrumental in stellarator
advancement
— Pioneered quasisymmetry, distinct from the QO
approach used on W7-X
— Development of analytic theory, analysis/modeling
codes, optimization techniques

e HSX has demonstrated benefits of quasihelical
symmetry; unique advantages for stellarators in moving
towards a reactor

— Low ¢ (reduced neoclassical transport, lower
bootstrap currents, smaller Shafronov shift)

— Low ion flow damping (turbulence suppression, island
healing...)




A Compelling Program can be Developed which Looks Beyond
Present Capabilities

e Turbulent transport reduction by design

e Greatly improved energetic particle
confinement

e Divertor structure/geometries that scale to a
reactor; investigate impurity
accumulation/expulsion

¢ Utilize advanced manufacturing and new coil
design techniques to reduce time, cost, risk
and complexity of fabrication

A mid-scale facility NOW would address these critical issues and provide the
needed data to assess application to a pilot plant
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' Configuration Identified with Excellent Confinement Properties
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' Non-Resonant Divertors are an Untested Design for Stellarators

e Non-resonant divertors promise
similar performance from vacuum to
operational point

— Insensitive to bootstrap current
and profile evolution

— Distinct from W7-X island divertor
which is very sensitive to current
profiles

e Non-resonant divertors require
empirical tests on a mid-scale
device

Bader PoP 2017, Boozer PoP 2018, picture courtesy of H. Frerichs
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' New Coil Tools and Manufacturing Capabilities Have Emerged

== REGCOIL s NESCOIL

B

e New coil capabilities, (FOCUS,
REGCOIL), have been developed

e These new tools produce simpler
coils and looser tolerances for
W7-X, HSX

Plasma

e FOCUS produced coils for new
configuration

e Technology advances like additive
manufacturing or new materials can
possibly aid mission and reduce cost

Landreman NF 2017, Zhu NF 2017, pictures courtesy of M. Landreman, T. Kruger
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' Scope of Mid-Scale Device is Set By Physics Goals

Minor radius 0.25m
Magnetic field 25T
Aspect ratio 6-8
Density <25 x 10 m3
Heating Power 1.5-2 MW
Heating Source | 75 GHz - 140 GHz

Hot thermal ions, low v*, test
neoclassical ion transport and flow

High density capability with neutral
burnout and detached operation

Adequate space for non-resonant
divertor with low impurity source

NBI available with upgrade, planned
in initial design

A W7-AS scale device can provide a basis for
an exciting and needed physics program
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" Operational in 8 Years at Initial Cost of $40-50 M

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8

e Initial operation 1.25 T, 70
GHz gyrotrons $40-50 M

e Upgradable to 2.5 T, 140
GHz gyrotrons, NB
additional $40-50 M
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Years from endorsement

e Cost estimate scaled from HSX upwards and W7-X downwards (does not
include cost savings available from advanced manufacturing)

US program has new ideas for improving the stellarator,
world-leading theory and modeling, strong international collaborations,
but needs new domestic experiments

We are ready to begin now

919



e
| Extra Slides I

99



' List of Stellarator Optimization Collaborators

e UW-Madison: D.T. Anderson, A. Bader, B.J. Faber, C.B. Forest, H. Frerichs,
B. Geiger, C.C. Hegna, K.M. Likin, I. McKinney, S.T. Kumar, T. Kruger,
J.S. Sarff, O. Schmitz, PW. Terry

e PPPL: S.R. Hudson, S.A. Lazerson, C. Zhu

e Auburn: G.J. Hartwell, D.A. Maurer. J.C. Schmitt
e ORNL: D.A. Spong, M. Cianciosa

e U. Maryland: M. Landreman, E. Paul

e UCLA: C. Deng

e NIFS: M. Nakata, Y. Suzuki

e Kyoto U: S. Murakami, K. Nagasaki

¢ IPP-Greifswald: M. Drevlak, S. Henneberg
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' Neoclassical and Turbulent Transport Details
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' Energetic Particle Confinement Details

Loss fraction for alpha particles
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Neoclassical transport comparisons for many configurations

Neoclassical Transport

-- HSX (coils)

-- NCSX (ideal)

-- W7-X (coils)

-- QHS46(ideal) =~

—— QHS-opt Pt

e cr is difficult to compare across
configurations because some
configurations are idealized (no
coils) and some are realistic (with
coils)

e For constructed machines (HSX,
W?7-X) the idealized target
configurations are not readily
available
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' Non-Resonant Divertors are an Untested Design for Stellarators

4F O

e Non-resonant divertors promise 6l
similar performance from vacuum to
operational point

— Insensitive to bootstrap current
and profile evolution

— Distinct from W7-X island divertor
which is very sensitive to current
profiles | | Al ggt\A M+

e Non-resonant divertors require - OkA M@@@i@
empirical tests on a mid-scale 0 os 4 15
device Tor. angle

Bader PoP 2017, Boozer PoP 2018

Pol. angle

9119



' Expanded Timeline

Year 1 Year 2

Preliminary design d
maturing existing concept
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Year 3

Final design
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Year 4-8

Construction
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Year 9-10 Year 11-12

Upgrade to high

First Operation Phase power and full field

Continuous
Device Operation
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