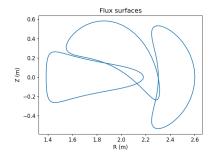
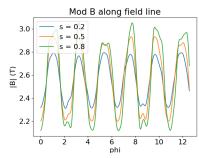
Comparison of best configurations so far

A. Bader with help from M. Drevlak, B. Faber, T. Kruger, M. Landreman, J. Schmitt, J. Schroeder and A. Ware

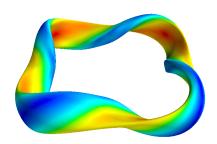
Wistell Meeting, Aug 9, 2019

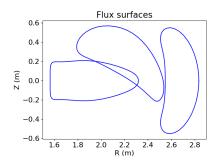

5 candidate configurations identified

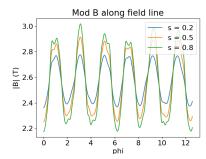

- Introduce each configuration
- Compare configurations as to different metrics
 - PTSM3D evaluation of turbulent transport
 - EP confinement at ARIES scale
 - Quasi-symmetry metric
 - Rotational transform
 - Epsilon effective metric
 - Presence of magnetic well

Current Wistell champion: ATEN

NFP	4	
Aspect	6.72	
Well	Yes	
lota r=0	1.09	
lota r=1	1.17	
Created by	ROSE from QI	

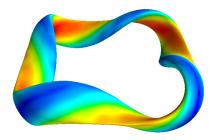


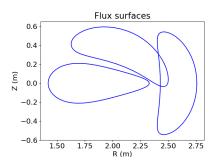


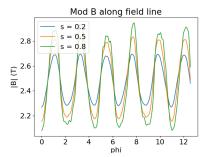


Low iota option: wistb_24

NFP	4	
Aspect	7.46	
Well	No :(
lota r=0	0.925	
lota r=1	0.965	
Created by	ROSE from AT	

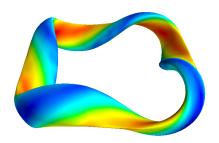


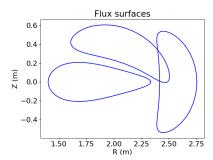


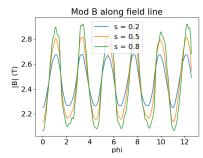


Constructed: $mljs_2$

NFP	4	
Aspect	7.14	
Well	Yes	
lota r=0	1.12	
lota r=1	1.18	
Created by	$O(r^2)$ const.	

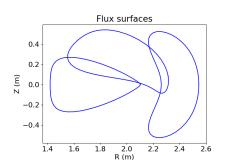


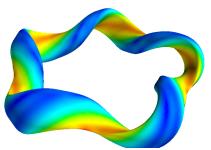


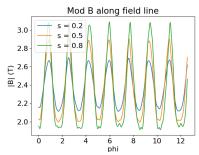


Constructed: mljs_3

NFP	4	
Aspect	7.11	
Well	Yes	
lota r=0	1.14	
lota r=1	1.20	
Created by $O(r^2)$ const		

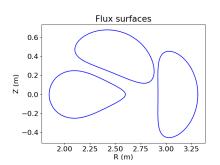


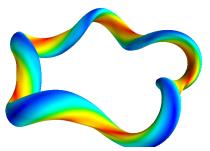


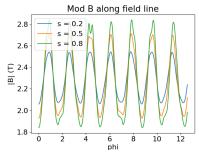


5 period option: ware5p_2

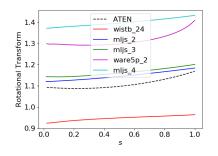
NFP	5	
Aspect	6.63	
Well	Yes	
lota r=0	1.3	
lota r=1	1.42	
Created by	STELLOPT	
	then ROSE	

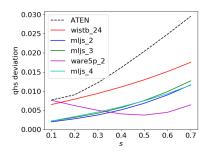


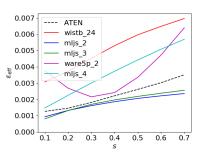


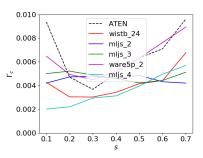


5 period option: mljs_4


NFP	5	
Aspect	8.6	
Well	Yes	
lota r=0	1.37	
lota r=1	1.435	
Created by	$O(r^2)$ const.	

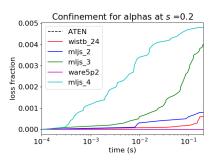


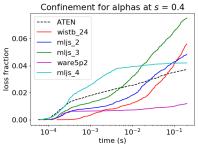


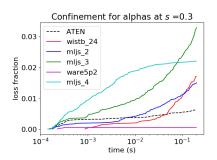

Performance evaluation - rotational transform & QH

Performance evaluation - ϵ_{eff} & Γ_c

- Might expect that mljs_4 performs well for EP based on Γ_c and QHS metric.
- Similarly, might expect that ATEN performs poorer than other configurations


Performance evaluation - PTSM3D


Values of $au_c/ au_c^{
m HSX}$


ταιασσ στ. τε, τε		
Config	Zonal	Non-Zonal
ATEN	0.819936	0.758255
wistb_24	1.328254	3.343897
mljs_2	1.115622	0.870768
mljs_3	0.937568	0.487022
ware5p2	0.786367	0.771038
mljs_4	???	???

- Non-linear heat flux $Q \sim 1/ au_c$, higher values are better
- One configuration, wistb_24 clearly outperforms the others with respect to the metric
- NB: Nonlinear Gene simulations showed that ATEN outperformed HSX contrary to expectations from the metric

Performance evaluation - Energetic Particles

- All configurations scaled to ARIES field and volume
- All below 0.5% losses at s=0.2
- ware5p2 outperforms all other configurations, including ATEN

Performance evaluation - Coils

Coil evaluations done by J. Schmitt using REGCOIL

- ATEN: Has a narrow window for good conditions for coils
- wistb_24: Medium window for good conditions
- mljs_2: Slightly better than ATEN, but not as good as wistb_24
- mljs_3: Medium window of good conditions, similar to wistb_24
- ware5p2: Very large window for good conditions, but difficult to match |B|, especially near crescent region
- mljs_4: Narrow window, slightly better than ATEN.
 Similar to mljs_2

For each configuration, REGCOIL was run in both 'target = rms_K' and 'target = max_K' modes, with many different target values.

For each target value, the separation between plasma & winding surface was varied to find minimum residual Bnorm that could be achieved

- Slide 2
- X-axis: KRMS
- Left Axis: Bnorm @ optimal separation
- Right Axis: Optimal separation

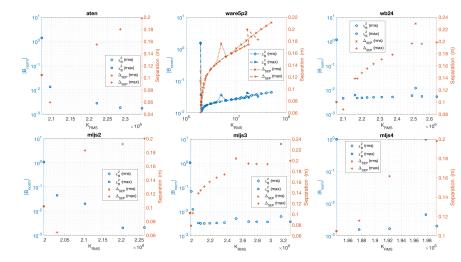
X-axis: KRMS

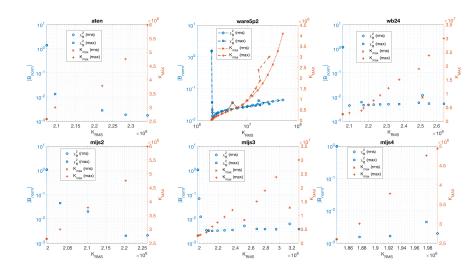
Slide 3

- Left Axis: Bnorm @ optimal separation
- Right Axis: Kmax

KRMS ~ Average coil curvature (smaller means 'simpler' coils)

Kmax ~ Maximum coil curvature (a measure of the 'tightest bends' in the coils)


ATEN: Narrow window of good conditions for for coils
WARE5p2: Very Large window of good conditions, but | B| is slightly larger.


WB24: Medium window of good condition

MLJS2: Similar to, but slightly better than, ATEN

MLIS3: Similar to WR24

MLJS4: Similar to MLJS2

