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Optimization
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Q Stellarator Optimization

e Optimization for energetic particle transport
e Improved coil algorithms

@ Non-resonant divertors for QS

© New QHS configuration for midscale experiments
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Optimization
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" Stellarators offer a reliable reactor concept with low recirculating
power

e Advantages of the stellarator concept
— Do not rely on current: No current driven disruptions
— Do not require current drive: Low recirculating power
— Not subject to Greenwald density limits: High density operation possible
o Difficulties of the stellarator concept
— More complicated design: Increased cost of construction. Opportunity for
advanced manufacturing to reduce costs
— Lack of experimental data. Opportunities for mid-scale devices to significantly
advance the concept
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Optimization
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' Optimization procedures can find improved stellarator configs

Define a boundary: R =3, , Rnncos (m0 —nQ), Z =%, , Znnsin (m — nQ)

e Define targets
to optimize and
set weights for

Set target “GQuess” an
metrics and initial
weights configuration

targets
e Solve for b::i::tw Sowefor Caluate
equilibrium, shape (VMEC, or...) functions
evaluate target
functions e [ S ]
e Perturb R,Z in changes shape

an optimization
scheme
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Optimization
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' New understanding allows optimization beyond HSX, W7-X

¢ Already demonstrated optimization for neo-classical transport,
quasisymmetry, low plasma currents

e Breakthroughs in recent years allow optimization for new phenomena, and
new improvements
— Turbulent transport (B. Faber - next talk)
Energetic particle confinement
Simplified coils (see posters by L. Singh P73 and T. Kruger P72 Thur.)
Non-resonant divertors (see poster by H. Frerichs P80 Thur.)
MHD stability (not in this talk, see poster by J. Schmitt P30 Tues.)
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Quasisymmetry - Tokamak transport in stellarator configurations

Tokamak or QA QH
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Benifits of QH

e Low flow damping in direction of symmetry (Gerhardt PRL 2005)
e Short connection lengths, lower bootstrap currents, lower Shafranov shift
(than QA).
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e Optimization for energetic particle transport
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| Alpha particle losses may be a driving factor for stellarator reactor
design

e ARIES-CS predicts 5% Alpha Energy 033 [y
loss o
— ARIES-CS has volume 450 m* and
By=56T
010 — Lost particles impact specific areas -
above heat flux limits

0.05 e Henneberg shows new QA with particle o1k

loss ~ 6% loss at mid-radius
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e Lotz (1992) predicts that QH and stellarators without bootstrap current should have

better confinement
— QH config. had 3% loss at Aspect Ratio 20

Mau FST 2008, Henneberg NF 2019, Lotz PPCF 1992
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I'. metric aligns J contours with flux surfaces

_ /a1 oJ. /d0N\ _ _ 1 8J
o J = fvds; <W> = Zery 000 \dt) = ~7Zem; 5

If J = J (¥) then ) = 0 and the particle does not drift off a flux surface
Lo~ Y Y Jy arctan? ((8)/(0)) 7

I'. is related to the ratio of the average radial drift, to the average poloidal drift;
ie.ifT.=0,J=J()
Minimizing I'. should improve energetic particle confinement
Testing effectiveness of T'.
— Start with a QHS configuration and attempt to optimize QHS, and T, separately
and together
— Evaluate equilibria with collisionless Monte Carlo calculation that mimic alpha
particle production

Nemov PoP 2008
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Optimizing for I'. and QHS reduces collisionless losses to reactor
relevant levels

Loss fraction for alpha particles
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e All configurations scaled to 450 m* and By = 5.6 T at aspect ratio 6.7
e Prompt losses entirely eliminated in best performing case (red), and below
1% within s=0.3

Bader accented to JPP 2019
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Improvements in alpha confinement is not correlated to e
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e Optimizer succeds in optimizing QHS and I,
e Improvement of alpha confinement despite worse e across most of the
radius

A. Bader ISHW 2019 8/21



ER
000080

' Loss reduction appears mostly at trapped passing boundary

Loss vs. pitch for alphas, t = 0.2s

601 — noopt H
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s=0.3

e Most problematic region is near the trapped
passing boundary

e The best confinement case (red) sacrifices
confinement of deeply trapped particles to better

60 | confine particles near the trapped passing

1 ' boundary

e If p = p(v)) and alpha velocity is isotropic, then
fewer particles will be born deeply trapped than
at the trapped passing boundary
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' Five period configuration: losses below 1% at s=0.3

Confinement for alpha particles at s=0.3
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e Both configurations at aspect ratio
6.7

e Collisionless alpha losses below any
published result to date
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e Improved coil algorithms
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Coils
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:

' New codes have advanced coil design

e FOCUS: solve coils in 3D space. (Zhu NF
2017)

e REGCOIL: solve for current potential on
boundary surface, coils are contours of
current potential. (Landreman NF 2017)

e Additional codes (not shown) ONSET,
COILOPT++

(b) @8 REGCOIL g5 NESCOIL
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Loss vs. pitch for alphas, t = 0.2s
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Coils
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' Developed new optimization for finite build coils

e Specify angle «, orientation of coil
winding pack

e Optimize over a as additional
parameter along with coil position

See L. Singh P73 Thur.

A. Bader ISHW 2019 13/21



Divertors
[e]e]e]

@ Non-resonant divertors for QS
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Divertors
[ Jele}

| Quasi-symmetric stellarators may not be compatible with helical or
island divertors

Early W7-X

¢ Island divertor and helical divertors may not be
suitable for other optimizations with finite bootstrap
current, such as quasi-symmetric stellarators

e Early designs of W7-X exploited non-resonant

divertors

e Stellarator shapes tend to have “ridges” on the
surface

e Field lines follow along the ridges, like in a tokamak
X-point

o Difference from tokamaks: finite toroidal extent

Strumberger NF 1992, Bader PoP 2017
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Divertors
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Non-resonant divertors resilient to plasma evolution

- " e Quasi-symmetric
A e ], o stellarators will have finite

01

bootstrap currents and
Shafranov shifts

, . o ¢ Rotational transform profiles

© o Nomaed oroda R will alter making island
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NN A 5 - .
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osr e 1t o gﬁ ¥ .
e o . «*Mf . changes in plasma

P Momanedtoodann Tor. angle ' boundary shape

Bader PoP 2017
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Divertors
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Construction of a non-resonant divertor
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Calculate strike patterns on uniform wall
Create troughs in strike locations

Iterate until uniform distribution

Check resiliency

See H. Frerichs poster P.80 Thur.
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New QHS
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© New QHS configuration for midscale experiments
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New QHS
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“Midscale experiment can advance QS knowledge

e Phased approach begins at
1.25 T, upgradeto 25T

e Physics goals: Control
turbulent transport,
demonstrate good EP
confinement, validate
non-resonant divertor concept

A. Bader ISHW 2019

| Param. | Initial | Upgrade |

R(m) 2.0 2.0
a(m) 0.3 0.3
B(T) 1.25 2.5
ECH (MW) | 05 1.0
NBI (MW) | 0.0 1.0
7 (109 m3) | 0.15 0.3
T, (keV) | 3.2 40
7; (keV) 0.3 40

vF 04 | 0.005

Tei (S) 0.5 0.9

= (9) 0.06 | 0.07

17/21



New QHS
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' Excellent EP confinement with reduced turbulent transport

10
Alpha losses for ARIES-CS scale device & 8
T ] o 8F E
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e EP losses almost entirely eliminated L
at s=0.2 20015 P
e Turbulent heat flux reduced by 00101 =
factor of ~3 0005
o Slightly improved QHS metric %G1 02 03 oa o5 o8 a7
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New QHS
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' New coil design capabilities improve fidelity of magnetic structure

Min. Coil-plas. dist.
(Single filament) 19.5cm
Ave. Coil-plas. dist.
(Single filament) 22.5cm
RMS error
(Single filament) 0.53%
Min. Coil-plas. dist.
(Multi-filament) 14.6 cm
Ave. Coil-plas. dist.
(Multi-filament) 17.7 cm
RMS error
(Multi-filament) 0.60%
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New QHS
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' Expanded wall to test resonant divertor

e First attempt at
generating walls for
non-resonant divertors

e Localized toroidal
hotspots indicate
some finessing is
necessary

e lteration to improve
divertor has begun

e See H. Frerichs poster
P.80 Thur for more
details

Heat load (MW m*(-2))
1 2 3

Temperature (eV)
200

—]‘*‘i
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New metrics, tools, and optimizers improve design for next
generation of optimized equilibria

Energetic particle confinement at Tokamak levels within the mid-radius

New coil algorithms can produce high fidelity, realistic coils
First explorations of non-resonant divertor design has begun
Stay tuned for next talk by Benjamin Faber on turbulent transport optimization
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