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Stellarators offer a reliable reactor concept with low recirculating
power

• Advantages of the stellarator concept
– Do not rely on current: No current driven disruptions
– Do not require current drive: Low recirculating power
– Not subject to Greenwald density limits: High density operation possible

• Difficulties of the stellarator concept
– More complicated design: Increased cost of construction. Opportunity for

advanced manufacturing to reduce costs
– Lack of experimental data. Opportunities for mid-scale devices to significantly

advance the concept
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Optimization procedures can find improved stellarator configs

Define a boundary: R =
∑

m,n Rm,ncos (mθ − nζ), Z =
∑

m,n Zm,nsin (mθ − nζ)

• Define targets
to optimize and
set weights for
targets
• Solve for

equilibrium,
evaluate target
functions
• Perturb R,Z in

an optimization
scheme

A. Bader ISHW 2019 2 / 21



Optimization EP Coils Divertors New QHS

New understanding allows optimization beyond HSX, W7-X

• Already demonstrated optimization for neo-classical transport,
quasisymmetry, low plasma currents
• Breakthroughs in recent years allow optimization for new phenomena, and

new improvements
– Turbulent transport (B. Faber - next talk)
– Energetic particle confinement
– Simplified coils (see posters by L. Singh P73 and T. Kruger P72 Thur.)
– Non-resonant divertors (see poster by H. Frerichs P80 Thur.)
– MHD stability (not in this talk, see poster by J. Schmitt P30 Tues.)
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Quasisymmetry - Tokamak transport in stellarator configurations

Benifits of QH

• Low flow damping in direction of symmetry (Gerhardt PRL 2005)
• Short connection lengths, lower bootstrap currents, lower Shafranov shift

(than QA).
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Alpha particle losses may be a driving factor for stellarator reactor
design

• ARIES-CS predicts 5% Alpha Energy
loss

– ARIES-CS has volume 450 m3 and
B0 = 5.6 T

– Lost particles impact specific areas -
above heat flux limits

• Henneberg shows new QA with particle
loss ≈ 6% loss at mid-radius

– Volume of 1900 m3 at B0 = 5 T
– Loss suppressed deep in core

• Lotz (1992) predicts that QH and stellarators without bootstrap current should have
better confinement

– QH config. had 3% loss at Aspect Ratio 20

Mau FST 2008, Henneberg NF 2019, Lotz PPCF 1992

A. Bader ISHW 2019 5 / 21



Optimization EP Coils Divertors New QHS

Γc metric aligns J‖ contours with flux surfaces

• J =
∮

v‖ds;
〈

dψ
dt

〉
= 1

Zeτb

∂J
∂θ ;

〈 dθ
dt

〉
= − 1

Zeτb

∂J
∂ψ

• If J = J (ψ) then ψ̇ = 0 and the particle does not drift off a flux surface

• Γc ∼
∑

E/µ
∑

wells

∫
b arctan2

(
〈ψ̇〉/〈θ̇〉

)
τb

• Γc is related to the ratio of the average radial drift, to the average poloidal drift;
i.e. if Γc = 0, J = J (ψ)

• Minimizing Γc should improve energetic particle confinement
• Testing effectiveness of Γc

– Start with a QHS configuration and attempt to optimize QHS, and Γc, separately
and together

– Evaluate equilibria with collisionless Monte Carlo calculation that mimic alpha
particle production

Nemov PoP 2008

A. Bader ISHW 2019 6 / 21



Optimization EP Coils Divertors New QHS

Optimizing for Γc and QHS reduces collisionless losses to reactor
relevant levels

• All configurations scaled to 450 m3 and B0 = 5.6 T at aspect ratio 6.7
• Prompt losses entirely eliminated in best performing case (red), and below

1% within s=0.3
Bader accepted to JPP 2019
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Improvements in alpha confinement is not correlated to εeff

• Optimizer succeds in optimizing QHS and Γc

• Improvement of alpha confinement despite worse εeff across most of the
radius
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Loss reduction appears mostly at trapped passing boundary

• Most problematic region is near the trapped
passing boundary

• The best confinement case (red) sacrifices
confinement of deeply trapped particles to better
confine particles near the trapped passing
boundary

• If p = p(ψ) and alpha velocity is isotropic, then
fewer particles will be born deeply trapped than
at the trapped passing boundary
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Five period configuration: losses below 1% at s=0.3

• Both configurations at aspect ratio
6.7
• Collisionless alpha losses below any

published result to date
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New codes have advanced coil design

• FOCUS: solve coils in 3D space. (Zhu NF
2017)
• REGCOIL: solve for current potential on

boundary surface, coils are contours of
current potential. (Landreman NF 2017)
• Additional codes (not shown) ONSET,

COILOPT++
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FOCUS + REGCOIL accurately reproduce boundary
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Developed new optimization for finite build coils

• Specify angle α, orientation of coil
winding pack
• Optimize over α as additional

parameter along with coil position

See L. Singh P73 Thur.
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Quasi-symmetric stellarators may not be compatible with helical or
island divertors

Early W7-X

HSX

• Island divertor and helical divertors may not be
suitable for other optimizations with finite bootstrap
current, such as quasi-symmetric stellarators

• Early designs of W7-X exploited non-resonant
divertors

• Stellarator shapes tend to have “ridges” on the
surface

• Field lines follow along the ridges, like in a tokamak
X-point

• Difference from tokamaks: finite toroidal extent

Strumberger NF 1992, Bader PoP 2017
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Non-resonant divertors resilient to plasma evolution
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• Quasi-symmetric
stellarators will have finite
bootstrap currents and
Shafranov shifts

• Rotational transform profiles
will alter making island
divertors difficult

• Non-resonant divertors
promise similar
performance despite
changes in plasma
boundary shape

Bader PoP 2017
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Construction of a non-resonant divertor

• Calculate strike patterns on uniform wall
• Create troughs in strike locations
• Iterate until uniform distribution
• Check resiliency
• See H. Frerichs poster P.80 Thur.
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Midscale experiment can advance QS knowledge

• Phased approach begins at
1.25 T, upgrade to 2.5 T

• Physics goals: Control
turbulent transport,
demonstrate good EP
confinement, validate
non-resonant divertor concept

Param. Initial Upgrade
R(m) 2.0 2.0
a(m) 0.3 0.3
B(T) 1.25 2.5

ECH (MW) 0.5 1.0
NBI (MW) 0.0 1.0

n (1020 m−3) 0.15 0.3
Te (keV) 3.2 4.0
Ti (keV) 0.3 4.0
ν∗i 0.4 0.005

τei (s) 0.5 0.9
τE (s) 0.06 0.07
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Excellent EP confinement with reduced turbulent transport

• EP losses almost entirely eliminated
at s=0.2

• Turbulent heat flux reduced by
factor of ≈3

• Slightly improved QHS metric
A. Bader ISHW 2019 18 / 21



Optimization EP Coils Divertors New QHS

New coil design capabilities improve fidelity of magnetic structure

Min. Coil-plas. dist.
(Single filament) 19.5 cm

Ave. Coil-plas. dist.
(Single filament) 22.5 cm

RMS error
(Single filament) 0.53%

Min. Coil-plas. dist.
(Multi-filament) 14.6 cm

Ave. Coil-plas. dist.
(Multi-filament) 17.7 cm

RMS error
(Multi-filament) 0.60%
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Expanded wall to test resonant divertor

• First attempt at
generating walls for
non-resonant divertors
• Localized toroidal

hotspots indicate
some finessing is
necessary
• Iteration to improve

divertor has begun
• See H. Frerichs poster

P.80 Thur for more
details
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New metrics, tools, and optimizers improve design for next
generation of optimized equilibria

• Energetic particle confinement at Tokamak levels within the mid-radius
• New coil algorithms can produce high fidelity, realistic coils
• First explorations of non-resonant divertor design has begun
• Stay tuned for next talk by Benjamin Faber on turbulent transport optimization
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