Optimization of Quasihelically Symmetric Equilibria

A. Bader¹, D.T Anderson¹, M. Drevlak², B. Faber¹, H. Frerichs¹, C.C. Hegna¹, T. Kruger¹, J.C. Schmitt³, L. Singh¹, A. Ware⁴, C. Zhu⁵

1) University of Wisconsin-Madison

2) ÍPP-Greifswald3) Auburn University4) University of Montana5) PPPL

ISHW Madison Wisconsin USA, September 23, 2019

Work supported by DE-FG02-93ER54222, DE-FG02-99ER54546 and UW 2020 135AAD3116

A. Bader ISHW 2019 0 / 21

- Stellarator Optimization
- Optimization for energetic particle transport
- Improved coil algorithms
- Non-resonant divertors for QS
- New QHS configuration for midscale experiments

A. Bader ISHW 2019 0/21

- Optimization for energetic particle transport
- Non-resonant divertors for QS
- New QHS configuration for midscale experiments

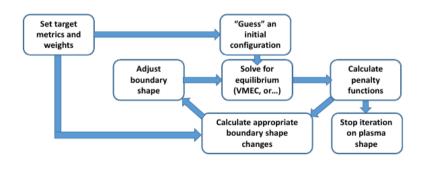
A. Bader ISHW 2019 0/21

Stellarators offer a reliable reactor concept with low recirculating power

Advantages of the stellarator concept

Optimization

- Do not rely on current: No current driven disruptions
- Do not require current drive: Low recirculating power
- Not subject to Greenwald density limits: High density operation possible
- Difficulties of the stellarator concept
 - More complicated design: Increased cost of construction. Opportunity for advanced manufacturing to reduce costs
 - Lack of experimental data. Opportunities for mid-scale devices to significantly advance the concept

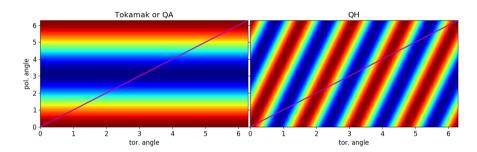

A. Bader ISHW 2019 1 / 21

Define a boundary: $R = \sum_{m,n} R_{m,n} \cos(m\theta - n\zeta)$, $Z = \sum_{m,n} Z_{m,n} \sin(m\theta - n\zeta)$

 Define targets to optimize and set weights for targets

Optimization

- Solve for equilibrium, evaluate target functions
- Perturb R, Z in an optimization scheme



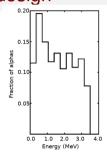
A. Bader ISHW 2019 2 / 21

- Already demonstrated optimization for neo-classical transport, quasisymmetry, low plasma currents
- Breakthroughs in recent years allow optimization for new phenomena, and new improvements
 - Turbulent transport (B. Faber next talk)
 - Energetic particle confinement
 - Simplified coils (see posters by L. Singh P73 and T. Kruger P72 Thur.)
 - Non-resonant divertors (see poster by H. Frerichs P80 Thur.)
 - MHD stability (not in this talk, see poster by J. Schmitt P30 Tues.)

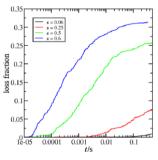
A. Bader ISHW 2019 3 / 21

Quasisymmetry - Tokamak transport in stellarator configurations

Benifits of QH


- Low flow damping in direction of symmetry (Gerhardt PRL 2005)
- Short connection lengths, lower bootstrap currents, lower Shafranov shift (than QA).

A. Bader ISHW 2019 4/21


- Optimization for energetic particle transport
- Non-resonant divertors for QS
- New QHS configuration for midscale experiments

A. Bader ISHW 2019 4/21

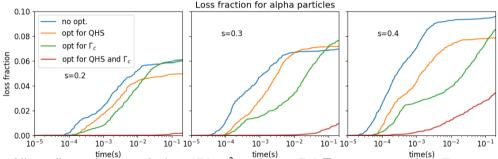
Alpha particle losses may be a driving factor for stellarator reactor design

- ARIES-CS predicts 5% Alpha Energy loss
 - ARIES-CS has volume 450 m³ and $B_0 = 5.6 \text{ T}$
 - Lost particles impact specific areas above heat flux limits
- Henneberg shows new QA with particle loss \approx 6% loss at mid-radius
 - Volume of 1900 m³ at $B_0 = 5$ T
 - Loss suppressed deep in core

- Lotz (1992) predicts that QH and stellarators without bootstrap current should have better confinement
 - QH config. had 3% loss at Aspect Ratio 20

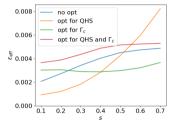
Mau FST 2008, Henneberg NF 2019, Lotz PPCF 1992

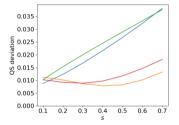
A. Bader ISHW 2019 5 / 21

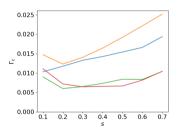

Γ_c metric aligns J_{\parallel} contours with flux surfaces

- $J = \oint v_{\parallel} ds$; $\left\langle \frac{d\psi}{dt} \right\rangle = \frac{1}{Ze\tau_b} \frac{\partial J}{\partial \theta}$; $\left\langle \frac{d\theta}{dt} \right\rangle = -\frac{1}{Ze\tau_b} \frac{\partial J}{\partial \psi}$
- If $J=J\left(\psi\right)$ then $\dot{\psi}=0$ and the particle does not drift off a flux surface
- $\Gamma_c \sim \sum_{E/\mu} \sum_{\mathrm{wells}} \int_b \arctan^2 \left(\langle \dot{\psi} \rangle / \langle \dot{\theta} \rangle \right) \tau_b$
- Γ_c is related to the ratio of the average radial drift, to the average poloidal drift; i.e. if $\Gamma_c=0,\,J=J\left(\psi\right)$
- Minimizing Γ_c should improve energetic particle confinement
- Testing effectiveness of Γ_c
 - Start with a QHS configuration and attempt to optimize QHS, and Γ_c , separately and together
 - Evaluate equilibria with collisionless Monte Carlo calculation that mimic alpha particle production

Nemov PoP 2008

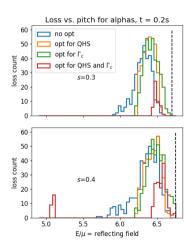

A. Bader ISHW 2019 6 / 21


Optimizing for Γ_c and QHS reduces collisionless losses to reactor relevant levels



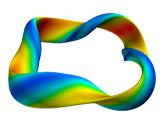
- All configurations scaled to 450 m³ and $B_0 = 5.6$ T at aspect ratio 6.7
- Prompt losses entirely eliminated in best performing case (red), and below 1% within s=0.3

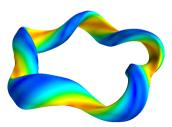
Improvements in alpha confinement is not correlated to ϵ_{eff}

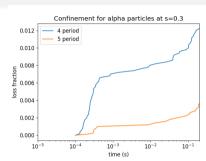


- Optimizer succeds in optimizing QHS and Γ_c
- Improvement of alpha confinement despite worse ϵ_{eff} across most of the radius

A. Bader ISHW 2019 8 / 21

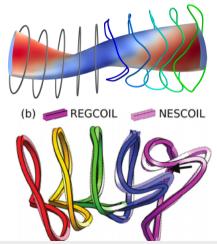

Loss reduction appears mostly at trapped passing boundary




- Most problematic region is near the trapped passing boundary
- The best confinement case (red) sacrifices confinement of deeply trapped particles to better confine particles near the trapped passing boundary
- If $p=p(\psi)$ and alpha velocity is isotropic, then fewer particles will be born deeply trapped than at the trapped passing boundary

A. Bader ISHW 2019 9 / 21

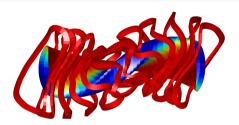
Five period configuration: losses below 1% at s=0.3

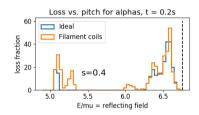

- Both configurations at aspect ratio 6.7
- Collisionless alpha losses below any published result to date

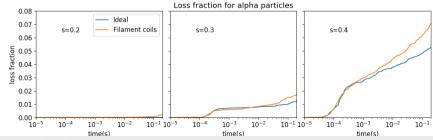
A. Bader ISHW 2019 10 / 21

- Stellarator Optimization
- Optimization for energetic particle transport
- Improved coil algorithms
- Non-resonant divertors for QS
- 5 New QHS configuration for midscale experiments

A. Bader ISHW 2019 10 / 21

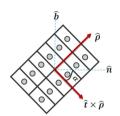

New codes have advanced coil design

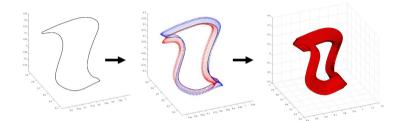



- FOCUS: solve coils in 3D space. (Zhu NF 2017)
- REGCOIL: solve for current potential on boundary surface, coils are contours of current potential. (Landreman NF 2017)
- Additional codes (not shown) ONSET, COIL OPT++

A. Bader ISHW 2019

FOCUS + REGCOIL accurately reproduce boundary



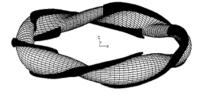


A. Bader ISHW 2019

Developed new optimization for finite build coils

- Specify angle α , orientation of coil winding pack
- Optimize over α as additional parameter along with coil position

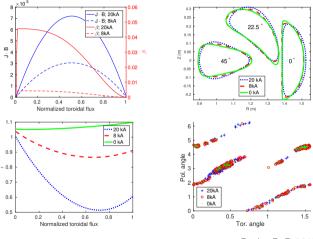
See L. Singh P73 Thur.


A. Bader ISHW 2019 13 / 21

- Optimization for energetic particle transport
- Non-resonant divertors for QS
- New QHS configuration for midscale experiments

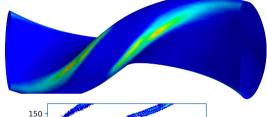
A. Bader ISHW 2019 13 / 21

Quasi-symmetric stellarators may not be compatible with helical or island divertors


HSX

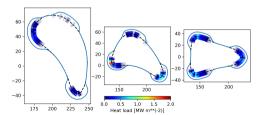
- Island divertor and helical divertors may not be suitable for other optimizations with finite bootstrap current, such as quasi-symmetric stellarators
- Early designs of W7-X exploited non-resonant divertors
- Stellarator shapes tend to have "ridges" on the surface
- Field lines follow along the ridges, like in a tokamak X-point
- Difference from tokamaks: finite toroidal extent

Strumberger NF 1992, Bader PoP 2017


Non-resonant divertors resilient to plasma evolution

Bader PoP 2017

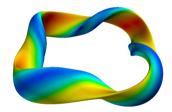
- Quasi-symmetric stellarators will have finite bootstrap currents and Shafranov shifts
- Rotational transform profiles will alter making island divertors difficult
- Non-resonant divertors promise similar performance despite changes in plasma boundary shape


Construction of a non-resonant divertor

- 150 |
- 60 40 20 0 -20 -40 -60

250

- Calculate strike patterns on uniform wall
- Create troughs in strike locations
- Iterate until uniform distribution
- Check resiliency
- See H. Frerichs poster P.80 Thur.

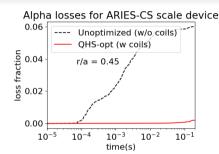

A. Bader ISHW 2019 16 / 21

New QHS

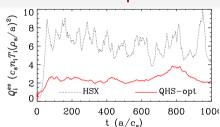
- Stellarator Optimization
- Optimization for energetic particle transport
- Improved coil algorithms
- Non-resonant divertors for QS
- 5 New QHS configuration for midscale experiments

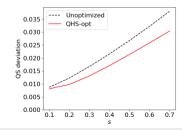
A. Bader ISHW 2019 16 / 21

Midscale experiment can advance QS knowledge

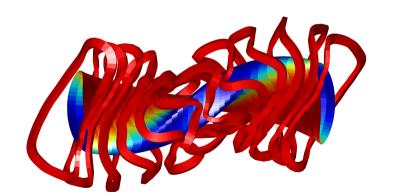

- Phased approach begins at 1.25 T, upgrade to 2.5 T
- Physics goals: Control turbulent transport, demonstrate good EP confinement, validate non-resonant divertor concept

Param.	Initial	Upgrade
R(m)	2.0	2.0
<i>a</i> (m)	0.3	0.3
B(T)	1.25	2.5
ECH (MW)	0.5	1.0
NBI (MW)	0.0	1.0
$n (10^{20} \text{ m}^{-3})$	0.15	0.3
T_e (keV)	3.2	4.0
T_i (keV)	0.3	4.0
$ u_i^*$	0.4	0.005
$ au_{ei}$ (s)	0.5	0.9
$ au_E$ (s)	0.06	0.07

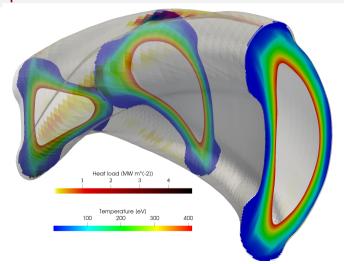

A. Bader ISHW 2019


New QHS

Excellent EP confinement with reduced turbulent transport


- EP losses almost entirely eliminated at s=0.2
- Turbulent heat flux reduced by factor of ≈3
- Slightly improved QHS metric

A. Bader ISHW 2019 18 / 21


New coil design capabilities improve fidelity of magnetic structure

Min. Coil-plas. dist.	
(Single filament)	19.5 cm
Ave. Coil-plas. dist.	
(Single filament)	22.5 cm
RMS error	
(Single filament)	0.53%
Min. Coil-plas. dist.	
(Multi-filament)	14.6 cm
Ave. Coil-plas. dist.	
(Multi-filament)	17.7 cm
RMS error	
(Multi-filament)	0.60%

A. Bader ISHW 2019 19 / 21

Expanded wall to test resonant divertor

- First attempt at generating walls for non-resonant divertors
- Localized toroidal hotspots indicate some finessing is necessary
- Iteration to improve divertor has begun
- See H. Frerichs poster P.80 Thur for more details

A. Bader ISHW 2019 20 / 21

New metrics, tools, and optimizers improve design for next generation of optimized equilibria

- Energetic particle confinement at Tokamak levels within the mid-radius
- New coil algorithms can produce high fidelity, realistic coils
- First explorations of non-resonant divertor design has begun
- Stay tuned for next talk by Benjamin Faber on turbulent transport optimization

A. Bader ISHW 2019 21 / 21