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Outline

* Overview of Landreman/Sengupta direct construction tool1.2:3
e Optimization on input parameters - solutions near a found minimum

* Direct parameter scan around minimum

1: Direct construction of optimized stellarator shapes. I. Theory in cylindrical coordinates, Landreman, Sengupta, 2018, J Plasma Physics
2: Direct construction of optimized stellarator shapes. Il. Numerical quasisymmetric solutions, Landreman, Sengupta, Plunk, 2018, J Plasma Physics
3: Constructing stellarators with quasisymmetry to high order, Landreman, Sengupta, 2019, J Plasma Physics



Why work with direct construction tool?

e Conventional optimization is slow, and highly dependent on good
initial guess of boundary shape

* Direct construction from Garren & Boozer!.2 near axis expansion
framework has advantages over optimization:

e Could produce QHS solutions inaccessible to STELLOPT/ROSE

* Rapid evaluation of the Fortran code (~10ms per solution) allows for
efficient search of space of quasisymmetric solutions

* This semester | investigated the solution space around optimized
solutions to access how to best use this tool in search of good QHS
solutions

1: Garren, D A & Boozer, A H 1991a Phys. Fluids B 3, 2805.
2: Garren, D A & Boozer, A H 1991b Phys. Fluids B 3, 282



Direct construction tool overview

e Algorithm based on Garren & Boozer12 near axis expansion:
r(r, 9, ¢) = rolp) + X(r, 9, 0)n(p) + Y (r, 9, 0)b(p) + Z(r, 9, p)t(¢)

where t, n, b are vectors in Frenet-Serret frame of magnetic axis
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e expansion quantities further expanded as power series in inverse aspect

ratio (major radius normalized to 1)

X(Ta Il?a 90) =rX; (799 90) + T2X2 (197 ‘70) + T3X3 (19) ‘70) t...

B(Ta 197 <P) — B()((,O) + 7B (79, (P) + 7‘232(19, Cp) + T3B3(797 ()0) T ...

and first and second order terms are further expanded as follows:
X1(7, ¢) =X15() sin(?) + Xic(p) cos(d),
Xo(9, ) =Xo0(p) + Xas(p) sin(29) + Xac(p) cos(29)

1: Garren, D A & Boozer, A H 1991a Phys. Fluids B 3, 2805.
2: Garren, D A & Boozer, A H 1991b Phys. Fluids B 3, 282



Direct construction tool: quasisymmetry to first order

* Algorithm based on Garren & Boozer'.2 near axis expansion:

r(r, 9, 0) = ro(p) + X (1,9, 0)n(p) + Y(r,9,0)b(p) + Z(r, 9, p)t(p)

* To first order in r, quasisymmetric fields are given by

r(r,d,¢) =ro(p) + ’:(’Z) cosIn(p) + TS¢S;3K(¢) [sin ¥ + () cos 9] b(p) + O(r?/R)

where sigma is a solution to this Riccati ODE

=4

d
Z 4+ (1o — N) ["—4+1+02] -~

di

K

2Gon” [ I —sy7| =0
Bol‘{,2 BO v B

here ﬁ = B1¢/Bo, |2 proportional to toroidal current on axis, sw = sign(\¥)

1: Garren, D A & Boozer, A H 1991a Phys. Fluids B 3, 2805.
2: Garren, D A & Boozer, A H 1991b Phys. Fluids B 3, 282



Direct construction tool: inputs

* Fortran numerical tool constructs boundaries up to O((r/R)"2), allowing for
shaping such as bean/triangular flux surfaces, Shafranov shift, and finite
pressure profiles

* Input parameters: nfp, aspect ratio, R and Z axis Fourier coefficients, }7]
BQC! B2S, I2a p2, O-(O)

* 1] =B1c/ Bo - describes magnitude that B varies on a flux surface
B = By |1+ ricosd+ O((T/R)z)]

e |»- toroidal current density on axis I(S) — 27T3a2]2 /,UO
* Bocss - how B varies with toroidal angle _
* po determines pressure profile p(r) = (1 - 7“2/&2)1?2

* ¢(0) is orientation of flux surface relative to normal vector of axisat ¢ =0

* For zero beta, stellarator symmetric configuration, many of these are set to
zero - Bos, I2, 0(0), R sine series, Z cosine series, p2



Direct construction: outputs

* Qutput parameters of interest:

* X, Y, Z expansion arrays - magnitude of X2 Y2, X3 Y3, reflect quality of
quasisymmetry (too large leads to self intersecting boundary)

* jota on axis

* magnetic well parameter on axis (d2V/dW2, negative for stability)

e max/mean elongation

e Boo residual - i.e. deviation from constant magnetic field strength on axis

e also axis length, max/mean curvature, torsion

e One way to access quality of solution is this objective:

f=wyo(Xy - Xp) + wyy (Y, - Yy) + wys(X5 - X3) + wys(Y; - ¥3) + wpoo(Byo_residual)



Constructed: mljs_2
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Optimization gives information about solution space

 Good QHS solutions appear to need a delicate balance in inputs

e Optimization can find be used to find solutions — several previous Wistell
candidate solutions were all found using a Nelder-Mead simplex method

e Aaron ran convexity scans on STELLOPT/ROSE and found the space to be
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Optimization of input parameters yields curves in

parameter space

* A small scan of optimization runs near a found minima shows that good
solutions appear to lie in narrow valleys in parameter space

e Optimizer getting trapped in local minima is still an issue
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Brute force parameter scan

* Alternative method is a direct parameter scan

 Multiple scans performed over a 10-D parameter space in the vicinity of an
optimized solution

e Evenly spaced grid of length 5 over 10 dimensions (8 axis shape terms,
eta_bar and Bazc) produces 510~ 10 million solutions per scan

e Data produced and collected on CHTC system

* Plots produced with Vaex - rapid plotting of massive sets made possible by
visualizing heatmaps of averaged quantities



Local scan around optimized solution

* A parameter scan of values close around minima shows that solutions degrade
quickly away from an optimized solution
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B2o residual and objective function both indicative

quality of quasisymmetry
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Point selection of best solutions

e Vaex allows for easy selection of points — below highlights a selection
of all solutions (about 4400) with objective<50
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Best points cover small area in iota-elongation space

e Vaex allows for easy selection of points — below highlights a selection
of all solutions (about 4400) with objective<50

145 A

140 4

135 4

®130{ 20000000 ESSEEEERSRE] [ e e e R PR R, o R et By

-
-

.
[0

- 16

125 4

120 A

120

115

118 A

45 50
max elongation

T
E
&
a o
5 116 {0 3
§ | H
- LY
8
8

114

112

29 3.0 31 32 33 34
max elongation




Solutions mixed throughout iota-elongation space

e Vaex plots heat map of mean quantities - this means information in
large scale plots gets smoothed out, a lot of solutions with very
different quality are packed tightly together in iota/elongation space
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Objective and magnetic well inversely correlated in local scan

* At least locally, quality of quasisymmetry and presence of on axis
magnetic well appear to be inversely correlated

* Recall for stability, d2V/dW2 < 0
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Broader scan around optimized solution

* A parameter scan of values near close around minima shows that solutions
degrade quickly away from an optimized solution
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Scan broad in non-axis parameters

* Broader scan shows many solutions at incredibly high elongation, but also a
higher range of iota values at lower elongation
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Selection of low elongation solutions looks qualitatively similar

to other scans

e “Zooming in” on just the low elongation solutions, the chart looks more like the

scans seen before
* Biggest difference is the higher range in on axis iota values
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Conclusions

* (Good solutions to direct construction tool appear to lie on curves in
multidimensional parameter space, as found using Nelder-Mead
optimization

* When parameters are varied in a regular way away from that curve, as
done for the parameter scans shown today, solutions degrade very
quickly



ldeas for next steps

More informed parameter scans/further analysis of parameter scans
already performed

* Arrange Fourier axis modes such that same order R/Z terms are
comparable in magnitude

Perform course scans with use of Nelder-Mead method at each grid
point, rather than simple evaluation of inputs over a large grid

* Possible room for improvement in optimization scheme
Perform conventional optimization procedures on found solutions

Extend work to other number of field periods - several minima have
been found previously for 5 field period configurations

Extend work to finite beta configurations - for all work here p2 =0



