Alpha confinement on ATEN with collisional ANTS

A. Bader

Wistell Meeting, Jan 10, 2020

Outline

- Description of the collisional model in ANTS
- Particle profiles and sourcing
- Collisional results

ANTS collisional model

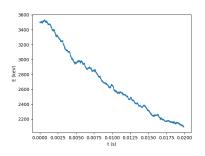
- ANTS collisional model uses a Maxwwell-Rosenbluth formulation for the collisions
- The Monte-Carlo algorithm is given in a writeup by Maassberg
- Includes slowing down, pitch angle scattering, parallel scattering evaluated on a guiding center orbit

Collision times for various processes

•
$$n_e = 5.0 \times 10^{20}$$
, $n_D = n_T = n_e/2$ ($Z_{\text{eff}} = 0$)

•
$$T_e = T_i = 12$$
 keV; $E_{\alpha} = 3.5$ MeV

•
$$\nu_{0j} = \frac{4\pi n_j q_j^2 q_\alpha^2 * \ln(\Lambda)}{(4\pi\epsilon_0)^2 m_\alpha^2 v_\alpha^{3/2}}; \ x_j = \frac{v_\alpha^2}{v_j^2}$$

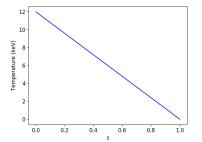

•
$$\nu_{sj} = (1 + m_{\alpha}/m_{j}) \Psi(x_{j}) \nu_{0j}; \ \nu_{\parallel j} = (\Psi(x_{j})/x_{j}) \nu_{0j}$$

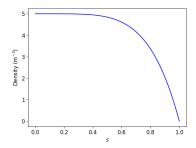
 $\nu_{\perp j} = (2\Psi(x_{j}) + 2\Psi'(x_{j}) - \Psi(x_{j})/x_{j}) \nu_{0j};$

•
$$\nu_{\mathsf{x}} = \sum_{j} \nu_{\mathsf{x}j}; \ \tau_{\mathsf{x}} = 1/\nu_{\mathsf{x}}$$

	elec.	D	T	tot
$\tau_s(s)$	0.086	2.46	3.15	0.081
$ au_{\perp}$ (s)	12.3	3.69	3.68	1.602
$ au_{\parallel}$ (s)	25.0	1080	1620	24.1

 $au_s/ au_{\perp} pprox 1/20$; $au_s/ au_{\parallel} pprox 1/300$ All equations from Callen's 725 notes

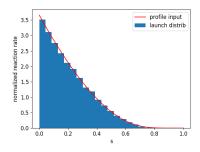

Factor of 2 difference between ANTS decay and calculated value

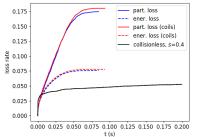


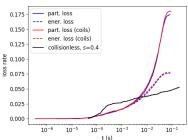
- Input flat temperature and density profiles
- Track a single particle
- Extract slowing down time of 0.040 s
- Since $\tau_E = \tau_s/2$ this agrees closely with Callen's values on the previous slide

"Realistic" inputs for temperature and density profiles

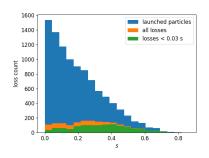
- Temperature is linear in s: $T = T_0(1-s)$; $T_0 = 12 \text{ keV}$
- Density is mostly flat: $n = n_0(1 s^5)$; $n_e = 5 \times 10^{20} \text{m}^{-3}$
- $n_D = n_T$ and $Z_{\rm eff} = 1.1$

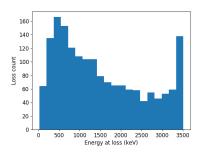



Note that since $\tau_s \propto T_e^{3/2}$, particle decay is much faster when given these profiles compared to the flat profile

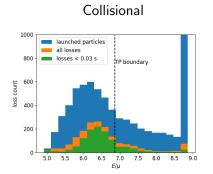

Reaction rate sets particle source function

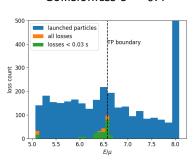
- $\langle \sigma v \rangle \propto T^{2/3} {\rm exp} \left(-19.94 \, T^{-1/3} \right)$: from NRL
- $R rac{dV}{ds} = \left(n_D^2/4\right) \langle \sigma v
 angle rac{dV}{ds}$: $rac{dV}{ds}$ from VMEC equilibrium
- Reaction rate calculated as a function of s
- This is passed into ANTS as the expected input function
- Histogram of particles launched by ANTS verify correct distribution


Energy losses approx 7.5%



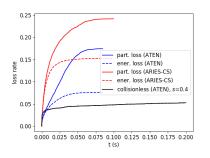
Energy losses much higher in collisional case compared to particle losses in collisionless case, even though particles are started inwards of $s=0.4\,$

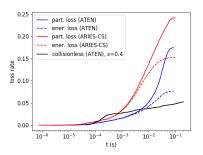

Particle losses broad in s



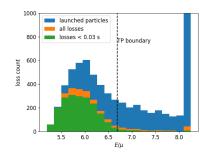
- ullet Even some core (s < 0.1) particles are lost
- Significant prompt losses exist (these appear mostly at s>0.4)

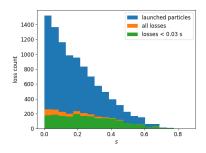
Losses are broader in E/μ than in collisionless case

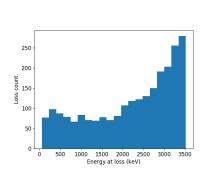


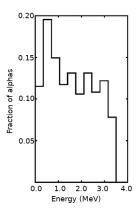

Collisionless s = 0.4

- Losses of particles born near the trapped passing boundary can be up to 50% when collisions are included
- ullet Even some passing particles with very high E/μ are lost


ATEN outperforms ARIES by factor of 2 in energy loss




ARIES publication says 5% energy losses but this is not reproduced here. (No information on collisional model, or particle source distribution was given in ARIES-CS papers)


ARIES loses nearly all deeply trapped particles promptly

Cannot reproduce published result of ARIES energy loss distribution

- Possibility 1: I have the wrong ARIES-CS equilibrium (rot. transform and pressure match published values though)
- Possibility 2: Our particle following algorithm is incorrect
- Possibility 3: ARIES-CS published results are incorrect

7.5% Energy loss is too high so what next?

- Fix reactor by: larger size, larger minor radius (European approach)
- Fix reactor by: higher field values (MIT approach)
- Fix reactor by: Better optimization.
 - We have configurations (such as BILA) that outperform ATEN with ideal configuration
 - But BILA is worse than ATEN once coils are factored in
 - How far should we push EP optimization?