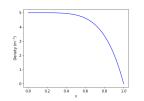
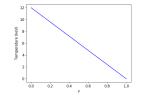
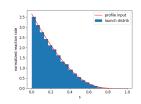
Alpha confinement with collisional ANTS (part 2)

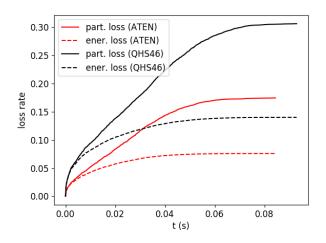

A. Bader

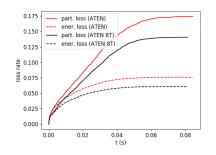

Wistell Meeting, Jan 24, 2020

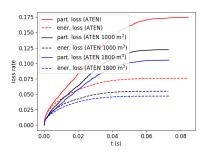

Calculation of collisionless losses with different equilibria

- QHS46 configuration
- ATEN configuration with different size/field
- BILA

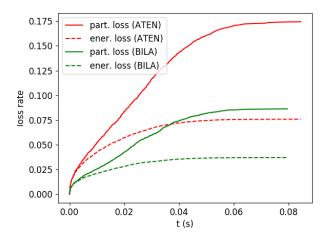
Temperature, density and alpha source profile



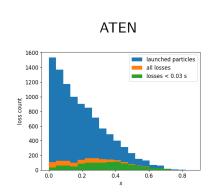


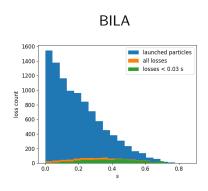

- Temperature is linear in s: $T = T_0(1-s)$; $T_0 = 12 \text{ keV}$
- Density is mostly flat: $n = n_0(1 s^5)$; $n_e = 5 \times 10^{20} \text{m}^{-3}$

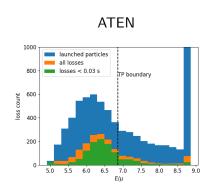
ATEN results show improvement of QHS46

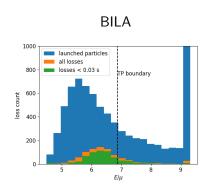


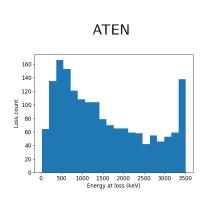
Slight improvements with increased field/size

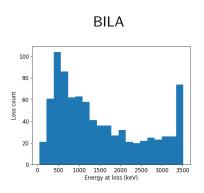



BILA (5 field period device) outperforms ATEN


Note: we have yet to find a good coil set for BILA that reproduces this behavior (unlike ATEN)


In both cases, fractional losses increase with s




Most losses occur near the trapped passing boundary

Large spike of prompt losses, then most losses at longer times

Some takeaways

- Is BILA good enough? It seems hard to do better than it, but maybe possible
- Can we find a configuration with BILA-type confinement, a magnetic well, and coils? This is the EP trifecta
- BILA outperforms (the questionable) published ARIES-CS data, 5% energy loss