Numerical Evaluation of 3D Local Equilibria

J. M. Duff¹, B. J. Faber¹, C. C. Hegna¹

¹University of Wisconsin-Madison

2/7/2020

Local 3D equilibrium allows investigation of shaping effects on local instability analysis.

- Affects of 3D geometry on local instabilities
 - Ballooning
 - Drift wave turbulence
- Global codes use lots of resources and time computing full plasma volume
- Generating MHD equilibrium for single flux surface would be much faster
 - ullet 64x64 grid \sim 4s, 128x128 \sim 50s vs. hours for high resolution VMEC
 - Especially helpful for optimization

Local equilibrium theory generates MHD solutions on a flux surface.

- MHD equilibrium solutions generated satisfying

$$\mathbf{J}\times\mathbf{B}=\boldsymbol{\nabla}\rho\qquad\boldsymbol{\nabla}\times\mathbf{B}=\mu_0\mathbf{J}\qquad\boldsymbol{\nabla}\cdot\mathbf{B}=0$$
 for a single flux surface $\psi=\psi_0$ in straight field line coordinates Θ and ζ

Local equilibrium theory requires:

C. C. Hegna, Phys. Plasmas, 2000

NE3DLE is a tool to generate MHD equilibrium solutions.

- Written in Julia
 - Easy to use like Python or Matlab
 - Precompiles for faster execution
- Can handle analytic shaping and shaping files for R and Z
 - Helical axis w/ elongation
 - D-shaped axisymmetric (Miller equilibrium)
 - Read gridded shaping files or VMEC files
- May output surface or field line quantities for flux tubes https://gitlab.com/jduff2/NE3DLE.git

Key geometric quantities are associated with turbulence instability drive and damping.

- Integrated local shear \varLambda is stabilizing
 - $\Lambda = -\nabla(\Theta \iota\zeta) \cdot \nabla\psi/B$
 - $g^{yy} = \frac{r^2 B^2}{|\nabla \psi|^2} (1 + \Lambda^2)$
 - Increase in g^{yy} enhances stabilization
- Curvature contributes to instability drive
 - Curvature = $rR_0 \frac{B}{|\nabla \psi|} (\kappa_n + \Lambda \kappa_g)$ $\kappa_n = \hat{\mathbf{n}} \cdot (\hat{\mathbf{b}} \cdot \nabla) \hat{\mathbf{b}}$
 - Curvature < 0 enhances ITG drive $\kappa_g = (\hat{\mathbf{b}} \times \hat{\mathbf{n}}) \cdot (\hat{\mathbf{b}} \cdot \nabla) \hat{\mathbf{b}}$
 - Curvature > 0 reduces ITG drive $\hat{\mathbf{b}} = \mathbf{B}/B$, $\hat{\mathbf{n}} = \mathbf{\nabla}\psi/|\mathbf{\nabla}\psi|$

D-shaped axisymmetric equilibria can be described by nine independent parameters in the Miller Equilibrium.

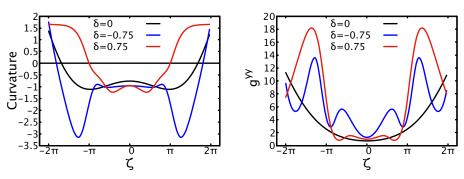
$$R = R_0 + r\cos(\theta + (\arcsin\delta)\sin\theta)$$
 $Z = \kappa r\sin(\theta)$

$$B_p = \frac{d_r \psi [\sin^2(\theta + x \sin \theta)(1 + x \cos \theta)^2 + \kappa^2 \cos^2 \theta]^{1/2}}{\kappa R [\cos(x \sin \theta) + d_r R_0 \cos \theta + [s_\kappa - s_\delta \cos \theta + (1 + s_\kappa)x \cos \theta] \sin \theta \sin(\theta + x \sin \theta)]}$$
$$\sin x = \delta \qquad f(\psi) = RB_{\phi}$$

κ	Elongation	$q=f/2\pi\int dI_p/R^2B_p$	Safety Factor
δ	Triangularity	α =-(2 μ 0 r R0 q^2 /B0) dp / $d\psi$	Pressure Gradient
$A=R_0/r$	Aspect Ratio	$\hat{s}=d \ln q/d \ln r$	Magnetic Shear
$d_r R_0$	Shift	$s_{\delta} = \delta/(1-\delta)^{1/2}$	
		$s_{\kappa} = (\kappa - 1)/\kappa$	

R. L. Miller, et al., Phys. Plasmas, 1998

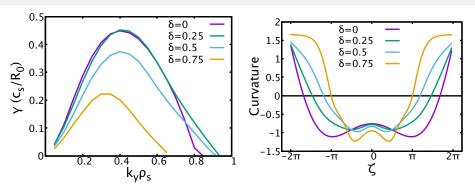
Varying δ modifies key geometric quantities.



- Positive δ decreased destabilizing curvature drive
- Negative δ increased destabilizing curvature drive, but increased local shear contributions stabilization

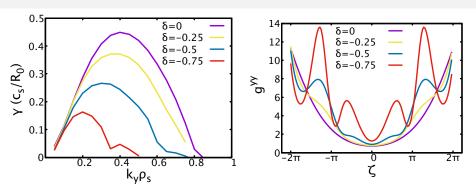
(UW-Madison) Wistell Meeting 2/7/2020 7 / 11

For positive δ , lower growth rates at low $k_y \rho_s$ with increasing δ .



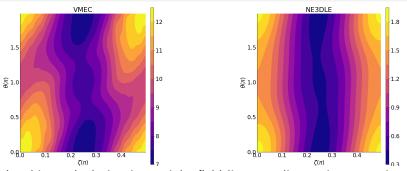
- Most turbulent transport occurs at low $k_{\rm v}\rho_{\rm s}$
- More favorable curvature with increased δ
- Lower growth rates at low $k_y \rho_{\rm s}$ correlated with lower curvature drive as δ increased

For negative δ , growth rates decreased at at low $k_y \rho_s$ as $|\delta|$ increased.



- Curvature favorability did not correlate with growth rates at low $k_{\rm y} \rho_{\rm s}$
- Increased g^{yy} correlated with increasing $|\delta|$
- Lower growth rates at low $k_y \rho_{\rm s}$ correlated with increased shear damping as $|\delta|$ increased

NE3DLE has reproduced large scale structure in the Jacobian for HSX.



- Jacobian calculation in straight-field-line coordinates is not optimal
 - Noise from second derivatives dominates calculation when too many modes are included
 - Cannot currently reproduce fine-scale structure of VMEC
- Implement VMEC strategy with "optimal" poloidal angle to reduce power in large (m,n) modes

Future Work

- Understand instability physics
 - Which geometry factors important for growth rates, saturation physics
 - Which components of Fourier spectrum influence geometry factors
- Wrapped in an optimizer to optimize for ITG turbulence