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• WISTA_15
• Stability, Well depth, Mercier
• Bootstrap current
• Constant P with varying N/T profiles: Effects of collisionality and Er
• BOOTSJ 
• SFINCS

• Ideal MHD ballooning stability

Outline



• Derived from FOCUS, T. Kruger
• Last closed flux surface was refined based on Poincaré maps, 

DESCUR and/or vacuum VMEC runs
• Magnetic well exists; Becomes deeper with increasing beta
• Ideal MHD ballooning growth rates calculated with COBRAVMEC

• Bootstrap current varies with collisionality, radial electric field
• Ignoring these effect results in an underestimate of the total bootstrap 

current for this QH configuration
• Consequences for modeling with BOOTSJ

COILSET: WISTA_15



• Most of the work assumes:
• T ~ T0 * (1 – s)
• N ~ N0 * (1 – s5)

• -> P ~ P0 (1 – s – s5 +s6)    
• v0 in the figure

• Later on, a variety of pressure profiles 
are checked

• Might add some flatter/broader profile 
selections

Mostly peaked pressure profiles are checked
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• Well depth improves with pressure

• Mercier stability (near mid-radius) improves 
(not certain about on-axis or edge behavior)



• SFINCS (M. Landerman)
• Left: <J.B> decreases with collisionality (at constant beta)
• Right: Effect of Ambipol Er vs Er=0 (for several cases of beta)

Bootstrap current: Importance of Er and collisionality



SFINCS vs BOOTSJ: BOOTSJ underestimates the total 
current density by 30%-40%



Seen before with NEO2, DKES

Figure 3. Normalized mono-energetic radial transport coefficient 
D11 (left) and normalized mono-energetic bootstrap current 
coefficient

* (right) as a function of collisionality computed by NEO-2 (solid) 
for finite collisionalities and by NEO (dotted) for the collisionless
limit at half radius s = 0.25 (circles) and quarter radius s = 0.0625 
(crosses). Markers on the solid lines correspond to results of NEO-2 
runs at given collisionalities.

Kernbichler, PPCF (2016)Beidler, Nuclear Fusion (2011)



Beta Scan with ‘v0’ profile
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The next few scan did NOT use bootstrap current.  
Considering the effect of pressure profile shape only. (if any)
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v0



v3

v2



• Profiles that are more ‘peaked’ tend to have lower stability 
limits (when ignoring bootstrap current)

• Next steps
• Stellopt: Use sfincs instead of bootsj: Better model of bootstrap 

current for spatially varying T/N profiles.
• Need robust set of operating parameters
• Meaningful/Reasonable profiles for T/N



HSX examples
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Well 10%
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QHS

Well 10%


