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Finite beta, with self-consistent bootstrap current

* Partl

Previous calculations show that BOOTSJ! underestimates the total bootstrap current by about 33%

The ‘Beta scan’ was repeated with SFINCS? for the bootstrap current calculation
* Comparison to BOOTSJ
* Beta scaling of neoclassical current, transform, epsilon effective
* Equilibrium Limits, Mercier, Well, Ballooning

* Part 2
STELLOPT Stability optimization

Net toroidal current = 0 (no bootstrap current)
 Stabilization to 1.8%
* Increase in shear is associated with the stabilization of ideal ballooning modes



Previously, it was shown that the self-
consistent bootstrap current is
underestimated by about 33% with BOOTS],
compared to SFINCS

A re-scan of Beta, using fixed temperature
and density profile shapes, was performed
with SFINCS
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Results of the Beta scan with self-consistent bootstrap current

(SFINCS) show that ATEN goes through iota=1 above 1%
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Stability analysis (Mercier and Ideal MHD Ballooning)

Mercier stability is given by3* Dy, = D¢+ Dy, + D; + D; = 0
272 (‘P"d)')z

Stabalizing shear term: Dg ;T = ”

Well (or hill) term: Dy, *ZS’TZ = [ [ gdede gls?: ccllp ( yr dpff dedf)

Net current: D, #: [ffgdjf _Biynp _ W' [ [ g M]
Geodesic curvature: i lff UB)dedC] Uf (IB)Sz;igdZ]ff B2 dedZ

|deal ballooning mode growth rates are rapidly and accurately calculated using VMEC coordinates
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Well depth and Mercier stability improves with Beta

* The depth of the magnetic well increases with Beta
* A small ‘magnetic hill’ region exists near the LCFS
* Mercier stability improves with beta, except near the edge
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ldeal ballooning instability sets in around Beta=1.28%

* Ballooning growth rates are positive (unstable) near s=0.7 at
Beta = 1.28%
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A ‘simple’ STELLOPT exercise

e STELLOPT Stability optimization
Initial condition: ATEN ( ideal boundary, not with the WISTA_15 coil set)
Variables: RBS, ZBS (all modes up to ~8)
Fixed boundary equilibrium, Net toroidal current = 0 (no bootstrap current)
Targets: Aspect ratio, Major radius, Ballooning stability
Optimizer control parameters were modified between runs: EPSTOL and FACTOR

* These two parameters control the finite differences and search vectors
* Otherwise, the STELLOPT runs are identical

Results
» Stabilization of ballooning modes through increased shear of the rotational transform.
 Stabilization to 1.8%
* Increase in shear is associated with the stabilization of ideal ballooning modes
* Global shear is the quantity reported here
* Local shear is very likely the more ‘precise’ hidden variable here,
* Not directly accounted for in the optimization, except as part of the ballooning instability metric



Blue: ATEN Vacuum
Red: Aten, Beta = 1.8%

Black: STELLOPT RUNS (about 10 ‘solutions’ shown)
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Blue: ATEN Vacuum
Red: Aten, Beta = 1.8%

Black: STELLOPT RUNS (about 10 ‘solutions’ shown)

* Each of the STELLOPT
runs increases the major
radius by a small
amount
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