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• Part 1
• Previous calculations show that BOOTSJ1 underestimates the total bootstrap current by about 33% 
• The ‘Beta scan’ was repeated with SFINCS2 for the bootstrap current calculation

• Comparison to BOOTSJ
• Beta scaling of neoclassical current, transform, epsilon effective
• Equilibrium Limits, Mercier, Well, Ballooning

• Part 2
• STELLOPT Stability optimization
• Net toroidal current = 0 (no bootstrap current)

• Stabilization to 1.8%
• Increase in shear is associated with the stabilization of ideal ballooning modes

Finite beta, with self-consistent bootstrap current



• Previously, it was shown that the self-
consistent bootstrap current is 
underestimated by about 33% with BOOTSJ, 
compared to SFINCS

• A re-scan of Beta, using fixed temperature 
and density profile shapes, was performed 
with SFINCS

• T ~ T0 * (1 – s)
• N ~ N0 * (1 – s5)
• P ~ P0 (1 – s – s5 +s6)   

•



Results of the Beta scan with self-consistent bootstrap current 
(SFINCS) show that ATEN goes through iota=1 above 1%
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Stability analysis (Mercier and Ideal MHD Ballooning)

Ballooning Stability
• Ideal ballooning mode growth rates are rapidly and accurately calculated using VMEC coordinates5
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Mercier stability is given by3,4: 𝐷- = 𝐷. + 𝐷/ + 𝐷0 + 𝐷1 ≥ 0
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• Geodesic curvature:  𝐷1
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Mercier Criterion



• The depth of the magnetic well increases with Beta
• A small ‘magnetic hill’ region exists near the LCFS
• Mercier stability improves with beta, except near the edge

Well depth and Mercier stability improves with Beta
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• Ballooning growth rates are positive (unstable) near s=0.7 at 
Beta = 1.28% 

Ideal ballooning instability sets in around Beta=1.28%
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• STELLOPT Stability optimization
• Initial condition: ATEN ( ideal boundary, not with the WISTA_15 coil set)
• Variables: RBS, ZBS (all modes up to ~8)
• Fixed boundary equilibrium, Net toroidal current = 0 (no bootstrap current)
• Targets: Aspect ratio, Major radius, Ballooning stability
• Optimizer control parameters were modified between runs: EPSTOL and FACTOR

• These two parameters control the finite differences and search vectors
• Otherwise, the STELLOPT runs are identical

• Results
• Stabilization of ballooning modes through increased shear of the rotational transform.
• Stabilization to 1.8%
• Increase in shear is associated with the stabilization of ideal ballooning modes
• Global shear is the quantity reported here
• Local shear is very likely the more ‘precise’ hidden variable here,

• Not directly accounted for in the optimization, except as part of the ballooning instability metric

A ‘simple’ STELLOPT exercise
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• Each of the 

STELLOPT runs 
is stable to 
Ideal MHD 
Ballooning 
modes

• The transform 
profile is 
unique for each 
run, but the 
shear is very 
similar
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• Each of the STELLOPT 
runs increases the major 
radius by a small 
amount
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