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Resource challenges in stellarator optimization

m The problem of 3D magnetic confinement:
m Evaluating realistic physics objective functions can be (prohibitively) expensive
m Vast space of possible configurations to explore, how is this best accomplished?
m Many routes to an optimized stellarator:
m Surrogate modeling
m Novel optimization schemes (stochastic optimization, etc.)
m Automatic differentiation, adjoint methods
m “Brute-force” methods
m Most likely a combination of all of these will lead to new breakthroughs in stellarator
physics
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Stellarator optimization is expensive

m Governments are heavily invested in pushing the computing envelope
(Exascale Computing Project)
m The resources are there, provided they can be leveraged effectively
m Demonstrated need exists for an optimization framework that can operate extremely
large scales
m Exploring 10® quasisymmetric configurations with surrogate models still requires
significant resources
m For realistic physics targets, the devil can be in the details:
m Finite-build coils can alter quasisymmetry spectrum (secondary optimization problem)
m Magnetic field ripple with finite-build coils can significantly degrade energetic particle
confinement (requires expensive orbit-following)
m Details of linear instability/turbulence spectrum can significantly impact turbulence
saturation levels (requires knowledge of mode coupling)
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New paradigm in high-performance computing

m Moore’s Law has ended; performance gains in HPC focus on increasing concurrency

m Many physics simulation codes can no longer simply scale by adding more
computing cores

m Next gen NERSC Perlmutter system: 64 CPU cores, 256 GB shared memory, 4
NVIDIA Tesla A100 GPUs per node, 5+ TB/s flash filesystem

m A scalable optimizer needs to leverage all of these resources
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Leveraging resources

Portable, efficient resource allocation is a difficult problem, but solutions exist
Requires a shift from traditional (MPI-based) computational physics programming:
m Lightweight computational threads operating on shared memory, not fenced processes

Thread and process management libraries exist to unify access to CPU-GPU
address spaces and optimize thread/execution scheduling:

m Kokkos - Sandia: programming ecosystem for parallel execution, memory abstraction
m HPX - LSU: parallel execution model focusing on hiding latency, fine-grained parallelism

Portable physics algorithms: CPU or GPU execution policy only determined at
compile time (no need for separate algorithms)

Portability further ensured by strict adherence to ISO standards (C, C++, Fortran)
Portability can also be ensured by using images: Docker, Singularity, Shifter
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Natural problem splitting

m Stellarator optimization naturally has 2 levels of parallelization: parallel equilibrium
evaluation, parallel objective function evaluation

m Physics targets only require knowledge of the equilibrium

m Logical splitting: evaluate one equilibrium per shared memory node, evaluate physics
targets concurrently on both CPU and GPU

targetResult = thread(targetObject::evaluate, &targetObject,
&RuntimeOptions, &EgObject) ;

B RuntimeOptions and EqObject are provided through separate libraries
m Encourages standardization of physics targets
m Use mango to control the optimization context
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Program flow

Schematic of possible program flow
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Proposed equilibrium interface

m A robust equilibrium interface is extremely useful for stellarator optimization

m Physics targets would link against the library, rather than individually defining a
geometry type
m Plasma Equilibrium Toolkit (PET, https://gitlab.com/wistell/PET)
m Flexible, C++17: Parallel STL, std: : future, std: :any,...

m Interface between equilibrium solvers, magnetic geometry data structures
m Goal: multithreaded, asynchronous fetch and compute operations

m Multithreaded: Useful for shared memory concurrency, no need to recopy data
m Asynchronous: Different physics targets might require different coordinate representations
(e.g. PEST vs. Boozer), only compute when necessary
m Initial implementation: focus on VMEC, transformation to PEST coordinates
for physics targets
m Next steps: include SPEC interface, implement Boozer coordinate transformation
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https://gitlab.com/wistell/PET

Testing with mango

m PET contains utilities to read VMEC Fortran namelist file, pass to Fortran

m Input parameters contained in std: :map<std::string, std::string>,
easy to pass through MPI (all have type MPI_CHAR)

m Easily construct a translator between state vector entries and VMEC parameters
m Example: boundary coefficients labeled by "rbc (N, M) " and "zbs (N, M) "

std: :map<size_t,std::string> translator;
translator[n] = std::string("rbc(3,2)");

m Translator and VMEC input parameters can then be passed through mango
using the set_user_data (void=) function
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Testing with mango

m Simple test case set up: target rotational transform on select surfaces
B Use mango: :Least_squares_problem:
2
W res(x) =) (¢ (s1) — vtarget (1))~ /o7

B s; : surfaces in normalized toroidal flux, target i = 5 with 1.05 < «(s) < 1.25, s € (0, 1)
m Target decreasing «(s) profile
m PET computes (s) using boost: :math: :cubic.b_spline = portable and accurate

m Parameterize problem with first 13 lowest boundary coefficients
B rbc(n,m), zbs(n,m) —n € [-2,2],m € [0, 2]
m Use PETSc-TAO brgn, POUNDERS algorithms for parallel objective function
evaluations

m Works. . .to some extent: eventually VMEC errors and calculation cannot recover (still
working on this)
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mango objective function implementation: simple!

m Head node:
vmecRuntimeDatax vmec_data = (vmecRuntimeDatax) userData;
std::map<std::string, std::string>x vmecOptions = vmec_data->parameters;

std: :map<int, std::string>+ translator = vmec_data->translator;

translate (stateVector, translator, vmecOptions); //Update the VMEC parameters
passStringMap (prob, vmecRuntimePars); //Pass updated parameters to workers
PET::VMEC vmec (vmecOptions);

vmec.initializeVMECData () ;

vmec.run_VMEC (comm_worker_groups) ;

vmec.retrieveVMECData (comm_worker_groups) ;

m Worker node:
while (prob->mpi_partition.continue_worker_loop()) {
vmecRuntimeDatax vmec_data = (vmecRuntimeDatax) userData;
std: :map<std::string, std::string>x vmecOptions = vmec_data->parameters;
passStringMap (prob, vimecOptions); // Receive the updated parameters
PET: :VMEC vmec (vmecOptions) ;
vmec.initializeVMECData () ;
vmec.run_VMEC (comm_worker_groups) ;
vmec.retrieveVMECData (comm_worker_groups) ;

}

B.J. Faber Wistell 08/14/2020 14 August, 2020 11/12



-
Early lessons

m The largest impediment currently is VMEC:

m Inexplicable memory leaks in PARVMEC code base: array entries observed to change
without any traceable cause

m Memory leaks invalidate any results obtained by VMEC, how can we trust?

m Debugging VMEC is extremely difficult: limited debugger functionality, valgrind is slow
and expensive

m Simple to connect with mango, only knowledge of API necessary
m Comparatively little time spent interfacing with mango (hours) vs. VMEC (days/weeks)

m Largest majority of time spent debugging and validating VMEC results, transitioning
to SPEC may be the better solution

m Optimizer comparison:

B POUNDERS (derivative-free) able to reverse «(s) profile
B brgn (derivative-based) effective at moving «(s) around ¢ = 1, not in reversing slope
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