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Resource challenges in stellarator optimization

The problem of 3D magnetic confinement:
Evaluating realistic physics objective functions can be (prohibitively) expensive
Vast space of possible configurations to explore, how is this best accomplished?

Many routes to an optimized stellarator:
Surrogate modeling
Novel optimization schemes (stochastic optimization, etc.)
Automatic differentiation, adjoint methods
“Brute-force” methods

Most likely a combination of all of these will lead to new breakthroughs in stellarator
physics
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Stellarator optimization is expensive

Governments are heavily invested in pushing the computing envelope
(Exascale Computing Project)
The resources are there, provided they can be leveraged effectively
Demonstrated need exists for an optimization framework that can operate extremely
large scales

Exploring 108 quasisymmetric configurations with surrogate models still requires
significant resources

For realistic physics targets, the devil can be in the details:
Finite-build coils can alter quasisymmetry spectrum (secondary optimization problem)
Magnetic field ripple with finite-build coils can significantly degrade energetic particle
confinement (requires expensive orbit-following)
Details of linear instability/turbulence spectrum can significantly impact turbulence
saturation levels (requires knowledge of mode coupling)

B.J. Faber Wistell 08/14/2020 14 August, 2020 3 / 12



New paradigm in high-performance computing

Moore’s Law has ended; performance gains in HPC focus on increasing concurrency
Many physics simulation codes can no longer simply scale by adding more
computing cores
Next gen NERSC Perlmutter system: 64 CPU cores, 256 GB shared memory, 4
NVIDIA Tesla A100 GPUs per node, 5+ TB/s flash filesystem
A scalable optimizer needs to leverage all of these resources
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Leveraging resources

Portable, efficient resource allocation is a difficult problem, but solutions exist
Requires a shift from traditional (MPI-based) computational physics programming:

Lightweight computational threads operating on shared memory, not fenced processes
Thread and process management libraries exist to unify access to CPU-GPU
address spaces and optimize thread/execution scheduling:

Kokkos - Sandia: programming ecosystem for parallel execution, memory abstraction
HPX - LSU: parallel execution model focusing on hiding latency, fine-grained parallelism

Portable physics algorithms: CPU or GPU execution policy only determined at
compile time (no need for separate algorithms)
Portability further ensured by strict adherence to ISO standards (C, C++, Fortran)
Portability can also be ensured by using images: Docker, Singularity, Shifter
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Natural problem splitting

Stellarator optimization naturally has 2 levels of parallelization: parallel equilibrium
evaluation, parallel objective function evaluation
Physics targets only require knowledge of the equilibrium
Logical splitting: evaluate one equilibrium per shared memory node, evaluate physics
targets concurrently on both CPU and GPU
targetResult = thread(targetObject::evaluate,&targetObject,

&RuntimeOptions,&EqObject);

RuntimeOptions and EqObject are provided through separate libraries
Encourages standardization of physics targets
Use mango to control the optimization context
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Program flow

Schematic of possible program flow
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Proposed equilibrium interface

A robust equilibrium interface is extremely useful for stellarator optimization
Physics targets would link against the library, rather than individually defining a
geometry type
Plasma Equilibrium Toolkit (PET, https://gitlab.com/wistell/PET)

Flexible, C++17: Parallel STL, std::future, std::any,. . .
Interface between equilibrium solvers, magnetic geometry data structures
Goal: multithreaded, asynchronous fetch and compute operations

Multithreaded: Useful for shared memory concurrency, no need to recopy data
Asynchronous: Different physics targets might require different coordinate representations
(e.g. PEST vs. Boozer), only compute when necessary

Initial implementation: focus on VMEC, transformation to PEST coordinates
for physics targets
Next steps: include SPEC interface, implement Boozer coordinate transformation

B.J. Faber Wistell 08/14/2020 14 August, 2020 8 / 12

https://gitlab.com/wistell/PET


Testing with mango

PET contains utilities to read VMEC Fortran namelist file, pass to Fortran
Input parameters contained in std::map<std::string,std::string>,
easy to pass through MPI (all have type MPI CHAR)
Easily construct a translator between state vector entries and VMEC parameters
Example: boundary coefficients labeled by "rbc(N,M)" and "zbs(N,M)"

std::map<size_t,std::string> translator;
...
translator[n] = std::string("rbc(3,2)");
...

Translator and VMEC input parameters can then be passed through mango
using the set user data(void*) function
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Testing with mango

Simple test case set up: target rotational transform on select surfaces
Use mango::Least squares problem:

res(x) =
∑

i

(
ι (si)− ιtarget (si)

)2
/σ2

i

si : surfaces in normalized toroidal flux, target i = 5 with 1.05 ≤ ι(s) < 1.25, s ∈ (0, 1)
Target decreasing ι(s) profile
PET computes ι(s) using boost::math::cubic b spline⇒ portable and accurate

Parameterize problem with first 13 lowest boundary coefficients
rbc(n,m), zbs(n,m) – n ∈ [−2, 2], m ∈ [0, 2]

Use PETSc-TAO brgn, POUNDERS algorithms for parallel objective function
evaluations
Works. . . to some extent: eventually VMEC errors and calculation cannot recover (still
working on this)
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mango objective function implementation: simple!
Head node:

vmecRuntimeData* vmec_data = (vmecRuntimeData*) userData;
std::map<std::string,std::string>* vmecOptions = vmec_data->parameters;
std::map<int,std::string>* translator = vmec_data->translator;
translate(stateVector,translator,vmecOptions); //Update the VMEC parameters
passStringMap(prob,vmecRuntimePars); //Pass updated parameters to workers
PET::VMEC vmec(vmecOptions);
vmec.initializeVMECData();
vmec.run_VMEC(comm_worker_groups);
vmec.retrieveVMECData(comm_worker_groups);

Worker node:
while(prob->mpi_partition.continue_worker_loop()){
vmecRuntimeData* vmec_data = (vmecRuntimeData*) userData;
std::map<std::string,std::string>* vmecOptions = vmec_data->parameters;
passStringMap(prob,vmecOptions); // Receive the updated parameters
PET::VMEC vmec(vmecOptions);
vmec.initializeVMECData();
vmec.run_VMEC(comm_worker_groups);
vmec.retrieveVMECData(comm_worker_groups);

}
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Early lessons

The largest impediment currently is VMEC:
Inexplicable memory leaks in PARVMEC code base: array entries observed to change
without any traceable cause
Memory leaks invalidate any results obtained by VMEC, how can we trust?
Debugging VMEC is extremely difficult: limited debugger functionality, valgrind is slow
and expensive

Simple to connect with mango, only knowledge of API necessary
Comparatively little time spent interfacing with mango (hours) vs. VMEC (days/weeks)

Largest majority of time spent debugging and validating VMEC results, transitioning
to SPEC may be the better solution
Optimizer comparison:

POUNDERS (derivative-free) able to reverse ι(s) profile
brgn (derivative-based) effective at moving ι(s) around ι = 1, not in reversing slope
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