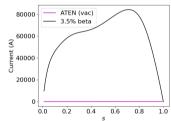
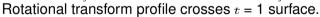
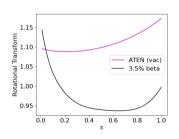
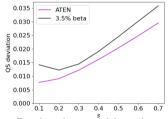

Towards a finite beta equilibrium

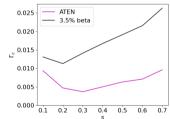

A. Bader, J.C. Schmitt Wistell 2020, Aug 21

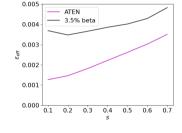

Goal: Optimize equilibria at "reactor-relevant" pressures


- ARIES-CS scale temperature and density and 8 T operation yield about 3.5% $_{\beta}$
- Start with ATEN equilibrium and add ARIES-like profiles, calculate bootstrap current
- Keep current fixed and optimize for QS, Γ_c and t
- Recalculate bootstrap current
- Repeat last two steps until equilibrium is satisfactory

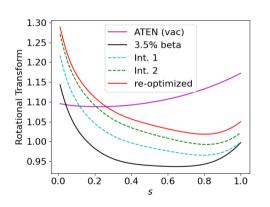
Step 1: Add current to vacuum config

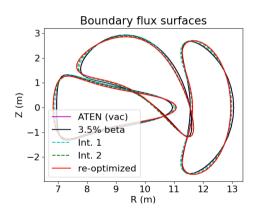


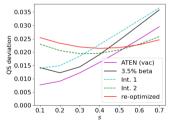


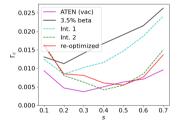


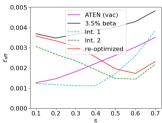
Step 1: Derived quantities



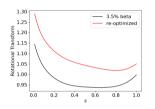


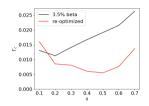

Derived quantities degrade, especially Γ_c

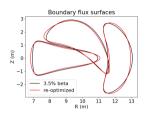

Attempting to move the rotational transform

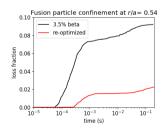


Attempting to move the rotational transform

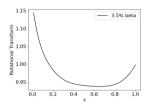


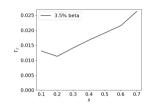


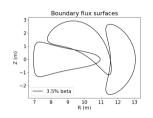


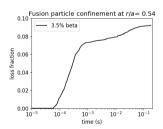

Quasi-symmetry profile different than ATEN, Γ_c mostly recovered

Including finite pressure in the optimization

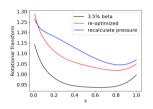


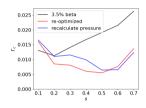


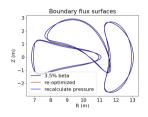


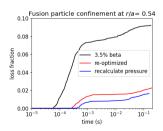

 Optimization is able to reduce the losses somewhat

Further optimization with finite pressure

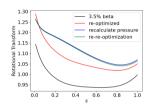


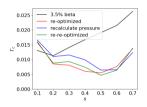


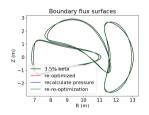


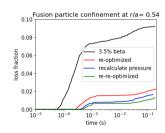

- Adding pressure changes the rotational transform profile - crosses
 t = 1 resonance surface (bad)
- Goal: optimize equilibrium to avoid rational surfaces and keep good energetic particle transport

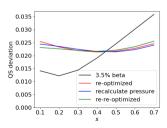
Further optimization with finite pressure

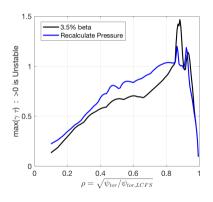


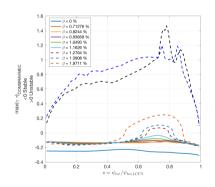





- Recalculating the pressure actually improves confinement slightly
- Can we do better still?


Further optimization with finite pressure





Ballooning stability is a problem

- Ballooning stability is lost over the entire volume.
- Profile shaping: Initial results (not shown) suggest that profile shaping can help stabilize the core, but the edge region is problematic.
- Shear \sim 0 region ALWAYS exists between 0.7< ρ <0.9 in ATEN-like finite beta configurations.
- Finite-beta, 0-current (no bootstrap) optimization showed that Ballooning stability can be attained, but the shear must be increased. This is a problem for ATEN-like finite beta with bootstrap current because a shear reversal ALWAYS happens between $0.7 < \rho < 0.9$.

Ballooning stability is a problem

- Ballooning stability is lost over the entire volume.
- Profile shaping: Initial results (not shown) suggest that profile shaping can help stabilize the core, but the edge region is problematic.
- Shear \sim 0 region ALWAYS exists between 0.7< ρ <0.9 in ATEN-like finite beta configurations.
- Finite-beta, 0-current (no bootstrap) optimization showed that ballooning stability can be attained, but the shear must be increased. This is a problem for ATEN-like finite beta with bootstrap current because a shear reversal ALWAYS happens between $0.7 < \rho < 0.9$.

Other issues

- Coils will be more difficult due to bootstrap current unwinding transform
- Turbulence optimization not yet attempted
- Do we care about other stability metrics (Mercier?)
- Need to figure out path from vacuum to optimized equilibrium (perhaps with control from aux coils)