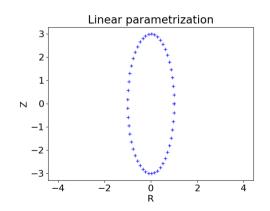
Ensuring equilibrium evaluations do not depend on parametrization

A. Bader, T.G. Kruger Wistell 2020, Aug 28

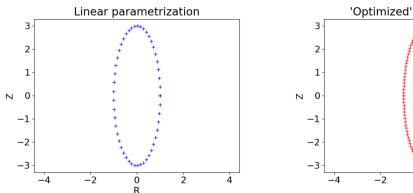

Wistell 2020, Aug 28 1 / 7

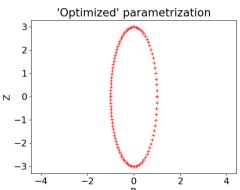
Parameter-dependent evaluations can cause problems

- STELLOPT and ROSE both optimize a boundary given by $R_{m,n}$ and $Z_{m,n}$ coefficients
- In this parametrization, the toroidal variable is the toroidal angle
- The poloidal variable is free, there is degeneracy in the representation
- VMEC internal surfaces resolve the degeneracy through a form of spectral condensation

Wistell 2020, Aug 28 2/7

"Simple" linear parametrizations can skew results

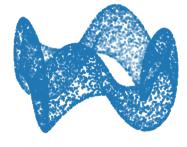



$$R = A\cos(t)$$
$$Z = B\sin(t)$$

- Let t be linear between $[0,2\pi]$
- Simple ellipse will have points overly represented near the elongated regions

Wistell 2020, Aug 28 3 / 7

Possible to "optimize" a configuration without changing the boundary



- Let Q be a property with lower penalties on the high-field side (neg. R)
- Exploiting the parametrization freedom can place more evaluation points in the "good region"

Wistell 2020, Aug 28

Avoiding parametrization errors in energetic particle evaluation

- Early EP confinement calculations showed "spurious" improvements
- Fixed by properly distributing particles in both physical and velocity space
- Generate randomized spawn points, such that the probability of finding particle in volume element $dV_0 \propto \mathcal{J}(s_0, \theta_0, \zeta_0)$

Wistell 2020, Aug 28 5 /

Early turbulent transport calculations showed similar problems

- Optimization using early turbulence metrics improved confinement by focusing on resonances
- Resonances were very deep, but also very steep
- Evaluation with slightly different settings showed that the improvements vanished

Wistell 2020, Aug 28

Possible issue with coil evaluation

- Typically coil-fits are evaluated by the normal field $\int_{S} B_{n}^{2}$
- Numerically, the integral is evaluated over a discrete sum
- Coils could be pushed to better fit oversampled regions (like the tops of the ellipses)
- Given linear parametrization in toroidal angle, QH configs, which have large radial excursions, will be overfit where R_{ax} is small (mid periods)

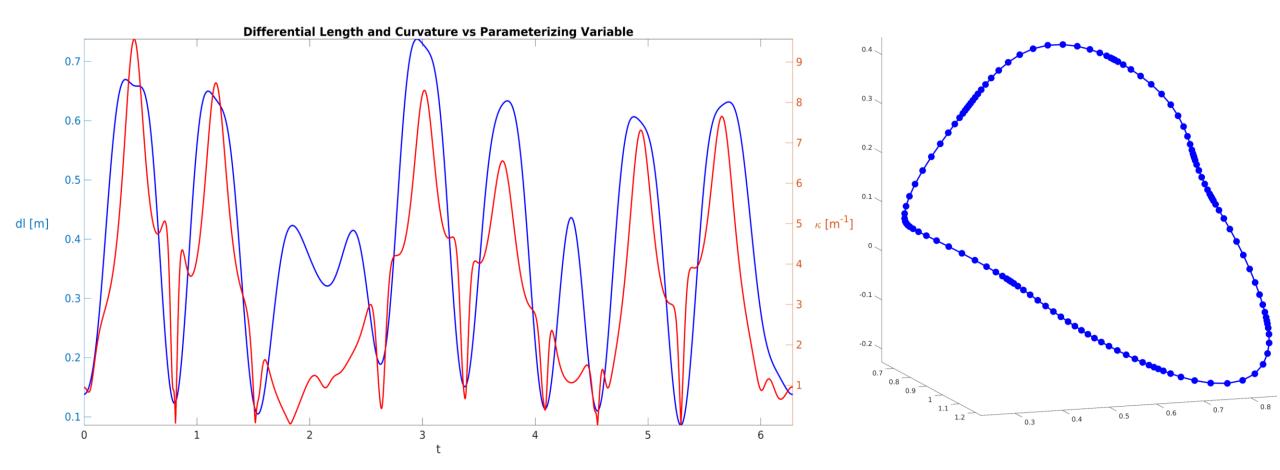
Wistell 2020, Aug 28 7/7

Ensuring Coil Evaluations do not Depend on Parametrization

T.G. Kruger, A. Bader Wistell 2020, Aug 28

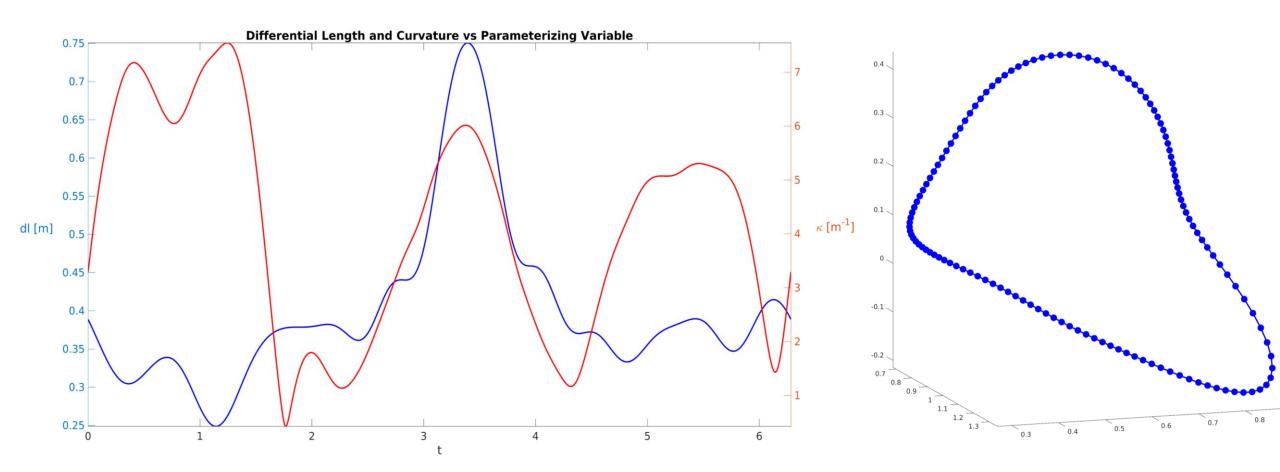
FOCUS Objective Functions Should be Parameterization Independent

 Fourier series coil parameterization in FOCUS is not an equal arc length parameterization and FOCUS does not use spectral condensation


$$\boldsymbol{r} = \sum_{n=0}^{N_F} \left[\left(X_{c,n} \cos(nt) + X_{s,n} \sin(nt) \right) \hat{\boldsymbol{x}} + \left(Y_{c,n} \cos(nt) + Y_{s,n} \sin(nt) \right) \hat{\boldsymbol{y}} + \left(Z_{c,n} \cos(nt) + Z_{s,n} \sin(nt) \right) \hat{\boldsymbol{z}} \right]$$

$$t \in [0,2\pi)$$

 If objective functions are parameterization dependent, coils can move tangentially to minimize objective functions


Parameterization Dependent Objective Function

$$f_{\kappa} = \sum_{i=1}^{Ncoils} \int_{0}^{2\pi} \kappa_{i}^{2} dt$$

Parameterization Independent Objective Function

$$f_{\kappa} = \sum_{i=1}^{Ncoils} \frac{1}{L_i} \int_0^{2\pi} \kappa_i^2 |\mathbf{r_i}| dt$$

