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The objective is a practical model for nonlinear stellarator MHD.

There are important questions regarding MHD dynamics in stellarators
and torsatrons:
• Loss of equilibrium due to b-driven topology change from large 

Shafranov shift
• Symmetry-breaking instabilities that lead to soft b-limits



Some stellarator/torsatron configurations are possible with the 
standard NIMROD representation.

• However, there are significant limitations:
• Mesh and wall geometry are assumed to be axisymmetric.
• Coil locations must be outside the axisymmetric domain.
• Numerical convergence with helical coil fields is challenging.

`=2, M=10 Stellarator Vacuum Configuration is Used

A stellarator with large rotational transform and nested flux surfaces which
fits within NIMROD’s axisymmetric simulation domain is designed for this
study.

This is used as the initial condition for simulations presented here.

Torrin Bechtel investigates p-driven loss of 
equilibrium in an l = 2, Np= 10 configuration.

Nucl. Fusion 52 (2012) 103023 M.G. Schlutt et al
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Figure 7. Poincaré plots at toroidal slice ζ = 0 for time (a) t = 0 and (b) t = 56 ms. The loop voltage is 1 V.
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Figure 8. Rotational transform at indicated times for the 1 V case.
Here a slice is taken along the major radius across the vessel at
ζ = 0. Values are shown for locations inside the last closed flux
surface. The magnetic axis is at R = 0.725 m.

core, but the profile again remains somewhat hollow, as shown
in figure 9. The total current for this case reaches about 60 kA,
as shown in figure 10.

In contrast to the 1 V case, island formation is observed
with an applied loop voltage of 4 V. The inwardly diffusing
current density increases the rotational transform at all radii.
Where the rotational transform assumes the value of a low-
order rational number, island formation is observed. This
island formation generally occurs away from the magnetic axis,
since the current, which provides the free energy for instability
growth, has a hollow profile and is thus concentrated away from
the core.

The n = 5 periodicity of the CTH configuration strongly
influences which island structures appear in this simulation. As
the rotational transform increases with the net current, islands
often appear where the transform takes on values of low-order
rational numbers that can be expressed with a numerator of five.
For example, an m = 12, n = 5 island structure corresponding
to !ι = 5/12 is prominent at t = 8.30 ms, as shown in figure 11.
Even with much of the rotational transform provided by the
plasma current, the magnetic energy spectrum is dominated
by the imposed n = 5 component and its harmonics, as shown
in figure 12. The m = 12, n = 5 island chain disappears as

Figure 9. Contours of parallel current density in the poloidal plane
ζ = 0 at t = 13.3 ms, for the 4 V case. The effect of island
formation can be seen in the wavy edge on the inboard side.
Magenta denotes the maximum current density λ = 1.5 m−1.
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Figure 10. Total current evolution for the 4 V case.

the rotational transform is raised above the resonant value by
the increasing current.

During the current rise, one might expect an m = 15,
n = 5 island to form at the !ι = 1/3 surface. While this is
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Mark Schlutt investigated startup MHD in CTH with 
applied loop voltage. [NF 52, 103023 (2012)]



Visco-resistive MHD with fluid closures will be the base model.

• Extended-MHD systems will be developed after stellarator functionality is 
established.
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Closure relations approximate plasma transport; sources include 
numerical corrections.

• Thermal conduction and viscous stress are anisotropic.

•

•

• Equations include numerical error-correcting terms.

• Diffusive particle flux:

• Momentum correction:

• Ohmic and viscous heating + energy correction:
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Fields are expanded into steady and evolving components.

• Steady components are treated as prescribed data and should satisfy 𝜕/𝜕𝑡 → 0 to 
be self-consistent.
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Generalizing NIMROD’s geometry is critical.

• NIMROD’s 2D spectral element/1D Fourier representation is retained.

• New: Expand geometric information in toroidal Fourier harmonics.
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Linear-geometry computations demonstrate the new capability.

• Example course meshes show the generalization:

Fourier Fourier

Conventional NIMROD meshes are 
uniform in the Fourier-expanded 
direction.

New meshing can follow 3D flux-
surface shaping (also in toroidal 
geometry).



We consider convergence on helical anisotropic diffusion.

• The computation is  &
'(&

)*
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= ∇ ⋅ 𝜒|| − 𝜒234 5𝐛5𝐛 + 𝜒234𝐈 ⋅ ∇𝑇 + 𝑆;, run to

steady state with uniform T along the boundary.

• Fixed helical field is: B =∇ AIl N pr R( )cos lθ − N pz R( )+ z⎡
⎣

⎤
⎦

• The configuration considered here has l = 2 and  (Np = 1, R = 4) or (Np = 2, R = 8)
for 0.19 < 𝜄 < 0.25 .

• The X-points are located where

𝐁 ⋅ ∇𝑟 = 0 and 𝐁 ⋅ ∇ 𝑙𝜃 − 𝑁H ⁄𝑧 𝑅 = 0

• Plotting shows that the X-points occur at r = 3.46.



Thermal energy is transported to the open-field region.

• The “cat eye” confinement region of this l = 2 case is clear with both meshes.

Computed temperature with pd=4, 
mx=my=32 on a shaped helical mesh.

Magnetic Poincaré plot overlaying computed 
temperature for Nf=32, pd=5, and mx=my=32.

Straight Mesh Helical Mesh



The meshing strongly influences numerical convergence.

• Normalized parameters have                    .
• Here, pd = degree of polynomials in mx × my polar meshes of elements.

SQ = 4, χ|| = (2 / 3)×10
6, χiso = 2 / 3

Central-T vs. poloidal and axial 
resolution that are varied simul-
taneously.

Straight Circular Mesh Helical Circular Mesh

Central-T vs. poloidal resolution with 
Fourier 0 ≤ 𝑛 ≤ 1 (Nphi=4) only.

Helical Elliptical Mesh

Central-T vs. poloidal resolution 
with 0 ≤ 𝑛 ≤ 1 only.



Using magnetic vector-potential can avoid divergence error.

• The Nedelec H(curl) elements3 maintain flexibility with respect to polynomial bases.

3J. C. Nedelec, Numerische Mathematik 35, 315 (1980). 

Linear-quadratic nodal 
𝜎 𝜉 𝜆 𝜂 ∇𝜉 basis vectors.
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Differential operators in time-dep. MHD and magnetostatics differ.

Linear V0=0, ideal MHD

𝜌a
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𝜕𝒂
𝜕𝑡 = 𝒗×𝑩𝟎 − ∇𝜒

∇i𝜒 = 𝐶∇ ⋅ 𝒂

• Magnetostatic computations use A in H(curl) elements; gauge set with H1 elements.4

• The double curl leads to a mathematically stable weak formulation.

Magnetostatics
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k
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1
𝜇𝜖i ∇ ⋅ 𝜖𝒂 = 𝜒

4Y.-L. Li, S. Sun, Q. I. Dai, and W. C. Chew, IEEE Trans. Mag. 51, 7002306 (2015). 

• The double-curl arises in MHD only with non-zero resistivity.



We test different formulations with 1D cylindrical ideal-MHD 
eigenvalue computations.5

• Elements are 1D in r ; q and z are Fourier.
• Formulations with different dependent variables are readily programmed.
• Radial expansions for each dependent variable are set at runtime.
• In cylindrical geometry, 1D H(curl) elements have:

• Discontinuous expansions for Ar of 1 degree lower than for rAq and Az

• Continuous expansions of rAq and Az of the same degree

5C. R. Sovinec, J. Comput. Phys. 319, 61 (2016). 



Eigenvalues for (m=1,k=2) with 
uniform 𝑩a = 𝐵ap𝒛, 𝜌a, and 𝑃a.
• The H(curl) computations have 

3 elements in r.  

Equilibria with peaked P0 have bad 
curvature: k=-1.5->stable; k=-1.78->un.
• Convergence is from stable side.

Alfvén

sound

Eigenfunction of unstable 
mode is localized.

The cylindrical eigenvalue computations support the use of H(curl).

• Results shown here have degree(rAq , Az, f) = degree(V, p, Ar)+1 .

• A in H(curl) without resistivity admits 0-frequency modes.



Eigenvalues for (m=1,k=2) with 
uniform 𝑩a = 𝐵ap𝒛, 𝜌a, and 𝑃a.
• Weyl has many more 0-

frequency modes.

The diffusive approach allows 
the k=-1.5 case (blue) grow 
faster than the converged       
k=-1.78 (dashed).

Alfvén

sound

Other gauge conditions produce more errors.

• Previous uses Coulomb via damping:
)𝒂
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• Alternative 1 uses Weyl:
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• Alternative 2 uses Coulomb via diffn:
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• Needs A in H1.



Using H1 instead of H(curl) leads to a 
weakly unstable mode in physically stable 
conditions.

The choice of vector-potential representation affects convergence.

• Cases shown here use:
)𝒂
)+ = 𝒗×𝑩𝟎 − ∇𝜒

∇i𝜒 = 𝐶∇ ⋅ 𝒂
)∇⋅𝒂
)+

= ∇ ⋅ 𝒗×𝑩𝟎 − 𝐶∇ ⋅ 𝒂



Other project aspects are in development.

• Advanced preconditioners for algebraic solves are being 
investigated.
• Present NIMROD approach is block-diagonal in Fourier.
• Extending cyclic reduction to include Fourier coupling is 

effective.6

• Pre-processing of equilibria will accept VMEC output. 

6C. R. Sovinec, NIMROD Team Meeting, Aug. 21-23 (2019).  [https://nimrodteam.org/meetings] 

https://nimrodteam.org/meetings/team_mtg_8_19/index.html


Conclusions and Next Steps

• The generalized NIMROD representation will facilitate stellarator
applications.

• Divergence-free stellarator-MHD is feasible with A in H(curl).

• Next steps:
• Implementing H(curl) A-representation in NIMSTELL branch
• Reading VMEC output for pre-processing




