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* Objective for stellarator-centric developments
* Generalized geometry

* Magnetic representation

e Other points and next steps




The objective is a practical model for nonlinear stellarator MHD.

There are important questions regarding MHD dynamics in stellarators
and torsatrons:

* Loss of equilibrium due to #driven topology change from large
Shafranov shift

* Symmetry-breaking instabilities that lead to soft f-imits




Some stellarator/torsatron configurations are possible with the

standard NIMROD representation.
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Mark Schlutt investigated startup MHD in CTH with Torrin Bechtel investigates p-driven loss of
applied loop voltage. [NF 52, 103023 (2012)] equilibrium in an /= 2, N,= 10 configuration.

 However, there are significant limitations:
 Mesh and wall geometry are assumed to be axisymmetric.
e Coil locations must be outside the axisymmetric domain.
* Numerical convergence with helical coil fields is challenging.



Visco-resistive MHD with fluid closures will be the base model.
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* Extended-MHD systems will be developed after stellarator functionality is
established.




Closure relations approximate plasma transport; sources include

numerical corrections.

* Thermal conduction and viscous stress are anisotropic.

e q =—n[()(” _Xiso)f’f""xisoll'VT

« T=vymn(I-3bb)b-W-b-v, mnW E=VV+VVT—§1V-V
e Equations include numerical error-correcting terms.

* Diffusive particle flux: T =-D Vn+D,VV?n

* Momentum correction: § =mVV-T',

* Ohmic and viscous heating + energy correction:
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Fields are expanded into steady and evolving components.

* Steady components are treated as prescribed data and should satisfy d/dt = 0 to
be self-consistent.

—+V:(nV+iV +iV)=-V-T

n

m(ns+ﬁ)(atV+V “VV+V-VV +V- VV)+mnV -VV,
=J xB+JIxB +IxB-2V(n T +il, +iT)-V-I+8

(ns+ﬁ) 9 ~ .~ - il
—T+V ‘-VT+V-VT +V-VT |+—V_-VT
al_ S S ,}/_1 S S

=-n TNV -V (nT+iT +iT)V-(V +V)-V-q+S,

@_—Vx(nJmJ +7J -V xB-VxB -VxB)+S,

ot




Generalizing NIMROD’s geometry is critical.

* NIMROD'’s 2D spectral element/1D Fourier representation is retained.

* New: Expand geometric information in toroidal Fourier harmonics.
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Linear-geometry computations demonstrate the new capability.

 Example course meshes show the generalization:
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Conventional NIMROD meshes are New meshing can follow 3D flux-
uniform in the Fourier-expanded surface shaping (also in toroidal
direction. geometry).




We consider convergence on helical anisotropic diffusion.

* The computation is — — [()(” Xiso)BB + )(l-sol] VT + 5, run to

steady state with unlform Talong the boundary.
+ Fixed helical field is:  B=V|Al,(N,r/R)cos(16-N,z/R)+z]

* The configuration considered here has/=2and (N,=1,R=4)or (N,=2,R=38)
for 0.19 <1< 0.25.

* The X-points are located where
B-Vr=0andB-V(l6 —N,z/R) =0

Plotting shows that the X-points occur at r = 3.46.




Thermal energy is transported to the open-field region.

* The “cat eye” confinement region of this / = 2 case is clear with both meshes.

Straight Mesh Helical Mesh
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Magnetic Poincaré plot overlaying computed Computed temperature with pd=4,
temperature for N,=32, pd=5, and mx=my=32. mx=my=32 on a shaped helical mesh.




The meshing strongly influences numerical convergence.

* Normalized parameters have S, =4, x”=(2/3)><106, Xigy =213 .
* Here, pd = degree of polynomials in mx X my polar meshes of elements.
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Using magnetic vector-potential can avoid divergence error.

* The Nedelec H(curl) elements® maintain flexibility with respect to polynomial bases.
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Standard 2D element.

Linear-quadratic nodal Quadratic-linear nodal
o (§)A(m)V¢ basis vectors. A(&)a () Vn basis vectors.

* The third basis vector is A(§)A(n) V(<.
* Tangential components are continuous; normal components are not.
* The normal component of their curl is continuous.
3J. C. Nedelec, Numerische Mathematik 35, 315 (1980).




Differential operators in time-dep. MHD and magnetostatics differ.

* Magnetostatic computations use A in H(curl) elements; gauge set with H! elements.*
* The double curl leads to a mathematically stable weak formulation.

Linear V=0, ideal MHD Magnetostatics
0v VX ~Vxa = j
dp ~ V.ea=
o7 = VPV v—v- VP e €a=x
da
E = VXBO — V)(
Viy=CV-a

_._* The double-curl arises in MHD only with non-zero resistivity.

4Y.-L. Li, S. Sun, Q. I. Dai, and W. C. Chew, IEEE Trans. Mag. 51, 7002306 (2015).



We test different formulations with 1D cylindrical ideal-MHD

eigenvalue computations.>

Elements are 1D in r; @and z are Fourier.

Formulations with different dependent variables are readily programmed.

Radial expansions for each dependent variable are set at runtime.

In cylindrical geometry, 1D H(curl) elements have:
* Discontinuous expansions for A, of 1 degree lower than for rAyand A,
* Continuous expansions of rA, and A, of the same degree

>C. R. Sovinec, J. Comput. Phys. 319, 61 (2016).



The cylindrical eigenvalue computations support the use of H(curl).

* Results shown here have degree(rAy, A,, @) = degree(V, p, A,)+1 .
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* The H(curl) computations have e Convergence is from stable side.
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* Ain H(curl) without resistivity admits O-frequency modes.



Other gauge conditions produce more errors.

* Previous uses Coulomb via damping: .

10 -
Jda _ . '-—-——""'""—.'
E _ ‘UXBO VX 10 - v . 10_1
V2 x=CV-a 8- y o3| T
ovV-a ~ A 3 ampin
7 =V- vaO —CV-a 3 61 o Alfvezn ‘E’ 103 : BiffuZivsg
* Alternative 1 uses Weyl: L) B - 4 10-7
oa / sound
Py UXB, 2 ¥ '] RS 10771 ’/’//‘
o Alternatlve 2 uses COUIOmb Vla dlffn' Reference W'eyl Diff:sive Zb 4-0 8I0
aa Nel
TR UXBg — Vx Eigenvalues for (m=1,k=2) with The diffusive approach allows
r=0CV-a uniform By = ByZ, py, and P,. the k=-1.5 case (blue) grow
—— =V -vXxBy—V?C,V-a
at 0 2 frequency modes. k=-1.78 (dashed).

Needs A in H1.




The choice of vector-potential representation affects convergence.

e (Cases shown here use:
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Using H! instead of H(curl) leads to a
weakly unstable mode in physically stable
conditions.




Other project aspects are in development.

* Advanced preconditioners for algebraic solves are being
investigated.

* Present NIMROD approach is block-diagonal in Fourier.

* Extending cyclic reduction to include Fourier coupling is
effective.®

* Pre-processing of equilibria will accept VMEC output.

6C. R. Sovinec, NIMROD Team Meeting, Aug. 21-23 (2019). [https://nimrodteam.org/meetings]



https://nimrodteam.org/meetings/team_mtg_8_19/index.html

Conclusions and Next Steps

* The generalized NIMROD representation will facilitate stellarator
applications.

* Divergence-free stellarator-MHD is feasible with A in H(curl).

* Next steps:

* Implementing H(curl) A-representation in NIMSTELL branch
 Reading VMEC output for pre-processing







