Development of MHD simulation capability for stellarators¹

Carl Sovinec, Colin Guilbault, Brian Cornille, and Torrin Bechtel

Department of Engineering Physics
University of Wisconsin-Madison

Wistell Group Meeting, November 20, 2020
¹Supported by US DOE grant DE-SC0018642.

Outline

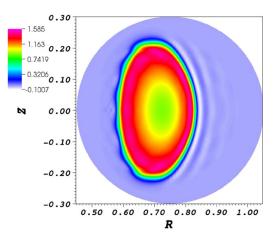
- Objective for stellarator-centric developments
- Generalized geometry
- Magnetic representation
- Other points and next steps

The objective is a practical model for nonlinear stellarator MHD.

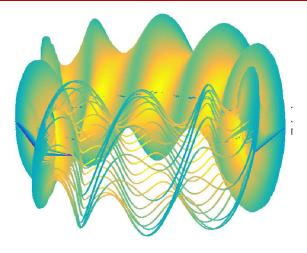
There are important questions regarding MHD dynamics in stellarators and torsatrons:

- Loss of equilibrium due to β -driven topology change from large Shafranov shift
- Symmetry-breaking instabilities that lead to soft β -limits

Some stellarator/torsatron configurations are possible with the standard NIMROD representation.



Mark Schlutt investigated startup MHD in CTH with applied loop voltage. [NF **52**, 103023 (2012)]



Torrin Bechtel investigates p-driven loss of equilibrium in an l = 2, $N_p = 10$ configuration.

- However, there are significant limitations:
 - Mesh and wall geometry are assumed to be axisymmetric.
 - Coil locations must be outside the axisymmetric domain.
 - Numerical convergence with helical coil fields is challenging.

Visco-resistive MHD with fluid closures will be the base model.

$$\begin{split} &\frac{\partial n}{\partial t} + \nabla \cdot \left(n \mathbf{V} \right) = -\nabla \cdot \mathbf{\Gamma}_n & \text{particle continuity with artificial diffusion} \\ &mn \bigg(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla \bigg) \mathbf{V} = \mathbf{J} \times \mathbf{B} - \nabla (2nT) - \nabla \cdot \underline{\Pi} + \mathbf{S}_p & \text{momentum density} \\ &\frac{n}{\gamma - 1} \bigg(\frac{\partial}{\partial t} T + \mathbf{V} \cdot \nabla T \bigg) = -nT \nabla \cdot \mathbf{V} - \nabla \cdot \mathbf{q} + S_Q & \text{temperature evolution} \\ &\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \Big(\eta \mathbf{J} - \mathbf{V} \times \mathbf{B} \Big) & \text{Faraday's law \& resistive} \\ &\mu_0 \mathbf{J} = \nabla \times \mathbf{B} & \text{Ampere's law} \end{split}$$

• Extended-MHD systems will be developed after stellarator functionality is established.

Closure relations approximate plasma transport; sources include numerical corrections.

Thermal conduction and viscous stress are anisotropic.

•
$$\mathbf{q} = -n \left[\left(\chi_{||} - \chi_{iso} \right) \hat{\mathbf{b}} \hat{\mathbf{b}} + \chi_{iso} \mathbf{I} \right] \cdot \nabla T$$

•
$$\underline{\Pi} = v_{\parallel} mn \left(\underline{\mathbf{I}} - 3\hat{\mathbf{b}}\hat{\mathbf{b}} \right) \hat{\mathbf{b}} \cdot \underline{\mathbf{W}} \cdot \hat{\mathbf{b}} - v_{iso} mn \underline{\mathbf{W}}$$
 $\underline{\mathbf{W}} = \nabla \mathbf{V} + \nabla \mathbf{V}^T - \frac{2}{3}\underline{\mathbf{I}}\nabla \cdot \mathbf{V}$

- Equations include numerical error-correcting terms.
 - Diffusive particle flux: $\Gamma_n = -D_n \nabla n + D_h \nabla \nabla^2 n$
 - Momentum correction: $\mathbf{S}_p = m\mathbf{V}\nabla \cdot \mathbf{\Gamma}_n$
 - Ohmic and viscous heating + energy correction:

$$S_{Q} = \frac{1}{2} \left(\eta J^{2} - \underline{\Pi} : \nabla \mathbf{V} \right) + \left(\frac{T}{\gamma - 1} - \frac{mV^{2}}{4} \right) \nabla \cdot \mathbf{\Gamma}$$

Fields are expanded into steady and evolving components.

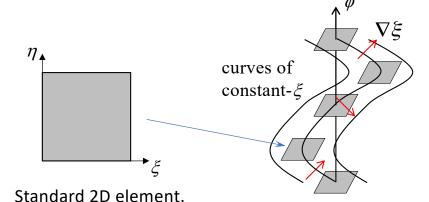
• Steady components are treated as prescribed data and should satisfy $\partial/\partial t \to 0$ to be self-consistent.

$$\begin{split} &\frac{\partial \tilde{n}}{\partial t} + \nabla \cdot \left(n_{s} \tilde{\mathbf{V}} + \tilde{n} \mathbf{V}_{s} + \tilde{n} \tilde{\mathbf{V}} \right) = -\nabla \cdot \mathbf{\Gamma}_{n} \\ &m \Big(n_{s} + \tilde{n} \Big) \left(\frac{\partial}{\partial t} \tilde{\mathbf{V}} + \mathbf{V}_{s} \cdot \nabla \tilde{\mathbf{V}} + \tilde{\mathbf{V}} \cdot \nabla \mathbf{V}_{s} + \tilde{\mathbf{V}} \cdot \nabla \tilde{\mathbf{V}} \right) + m \tilde{n} \mathbf{V}_{s} \cdot \nabla \mathbf{V}_{s} \\ &= \mathbf{J}_{s} \times \tilde{\mathbf{B}} + \tilde{\mathbf{J}} \times \mathbf{B}_{s} + \tilde{\mathbf{J}} \times \tilde{\mathbf{B}} - 2\nabla \Big(n_{s} \tilde{T} + \tilde{n} T_{s} + \tilde{n} \tilde{T} \Big) - \nabla \cdot \tilde{\mathbf{\Pi}} + \mathbf{S}_{p} \\ &\frac{\Big(n_{s} + \tilde{n} \Big)}{\gamma - 1} \Big(\frac{\partial}{\partial t} \tilde{T} + \mathbf{V}_{s} \cdot \nabla \tilde{T} + \tilde{\mathbf{V}} \cdot \nabla T_{s} + \tilde{\mathbf{V}} \cdot \nabla \tilde{T} \Big) + \frac{\tilde{n}}{\gamma - 1} \mathbf{V}_{s} \cdot \nabla T_{s} \\ &= -n_{s} T_{s} \nabla \cdot \tilde{\mathbf{V}} - \Big(n_{s} \tilde{T} + \tilde{n} T_{s} + \tilde{n} \tilde{T} \Big) \nabla \cdot \Big(\mathbf{V}_{s} + \tilde{\mathbf{V}} \Big) - \nabla \cdot \tilde{\mathbf{q}} + S_{Q} \\ &\frac{\partial \tilde{\mathbf{B}}}{\partial t} = -\nabla \times \Big(\eta_{s} \tilde{\mathbf{J}} + \tilde{\eta} \mathbf{J}_{s} + \tilde{\eta} \tilde{\mathbf{J}} - \mathbf{V}_{s} \times \tilde{\mathbf{B}} - \tilde{\mathbf{V}} \times \tilde{\mathbf{B}}_{s} - \tilde{\mathbf{V}} \times \tilde{\mathbf{B}} \Big) + \mathbf{S}_{B} \end{split}$$

Generalizing NIMROD's geometry is critical.

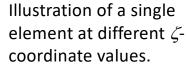
- NIMROD's 2D spectral element/1D Fourier representation is retained.
- New: Expand geometric information in toroidal Fourier harmonics.

$$\begin{split} R\left(\xi,\eta,\zeta\right) &= R_0\left(\xi,\eta\right) + \sum_{n=1}^{N} \left[R_n\left(\xi,\eta\right) e^{in\zeta} + c.c. \right] \\ Z\left(\xi,\eta,\zeta\right) &= Z_0\left(\xi,\eta\right) + \sum_{n=1}^{N} \left[Z_n\left(\xi,\eta\right) e^{in\zeta} + c.c. \right] \\ \phi\left(\xi,\eta,\zeta\right) &= \zeta + \phi_0\left(\xi,\eta\right) + \sum_{n=1}^{N} \left[\phi_n\left(\xi,\eta\right) e^{in\zeta} + c.c. \right] \end{split}$$



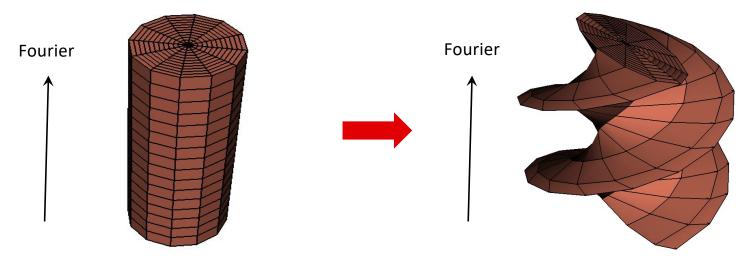
• The generalized toroidal angle ζ implies:

$$\nabla \xi \cdot \nabla \zeta \neq 0$$
 , $\nabla \eta \cdot \nabla \zeta \neq 0$ and when $\zeta \neq \phi$, $\nabla \zeta \neq \frac{1}{R} \hat{\phi}$.



Linear-geometry computations demonstrate the new capability.

Example course meshes show the generalization:



Conventional NIMROD meshes are uniform in the Fourier-expanded direction.

New meshing can follow 3D fluxsurface shaping (also in toroidal geometry).

We consider convergence on helical anisotropic diffusion.

- The computation is $\frac{1}{\gamma-1}\frac{\partial T}{\partial t} = \nabla \cdot \left[\left(\chi_{||} \chi_{iso} \right) \hat{\mathbf{b}} \hat{\mathbf{b}} + \chi_{iso} \mathbf{I} \right] \cdot \nabla T + S_Q$, run to steady state with uniform T along the boundary.
- Fixed helical field is: $\mathbf{B} = \nabla \left[AI_l \left(N_p r / R \right) \cos \left(l\theta N_p z / R \right) + z \right]$
- The configuration considered here has I=2 and $(N_p=1,R=4)$ or $(N_p=2,R=8)$ for $0.19<\iota<0.25$.
- The X-points are located where

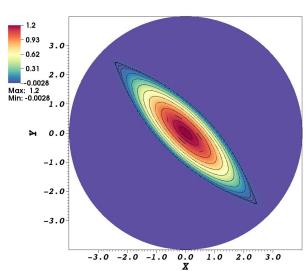
$$\mathbf{B} \cdot \nabla r = 0$$
 and $\mathbf{B} \cdot \nabla (l\theta - N_p z/R) = 0$

• Plotting shows that the X-points occur at r = 3.46.

Thermal energy is transported to the open-field region.

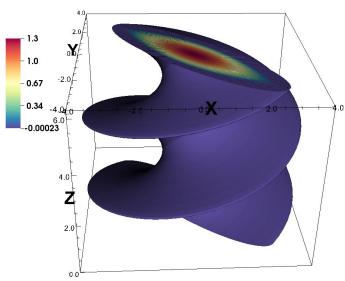
• The "cat eye" confinement region of this *I* = 2 case is clear with both meshes.

Straight Mesh



Magnetic Poincaré plot overlaying computed temperature for N_{ϕ} =32, pd=5, and mx=my=32.

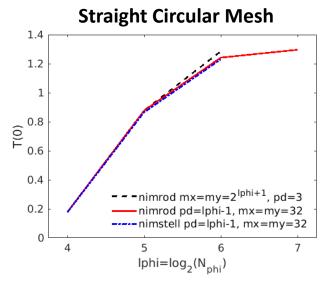
Helical Mesh



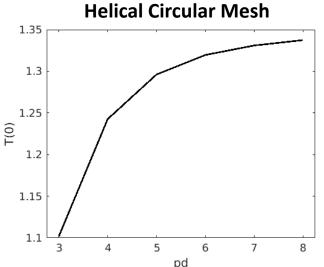
Computed temperature with pd=4, mx=my=32 on a shaped helical mesh.

The meshing strongly influences numerical convergence.

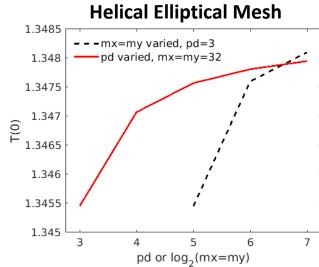
- Normalized parameters have $S_Q = 4$, $\chi_{||} = (2/3) \times 10^6$, $\chi_{iso} = 2/3$.
- Here, pd = degree of polynomials in $mx \times my$ polar meshes of elements.



Central-*T* vs. poloidal and axial resolution that are varied simultaneously.



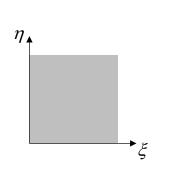
Central-T vs. poloidal resolution with Fourier $0 \le n \le 1$ (N_{phi}=4) only.



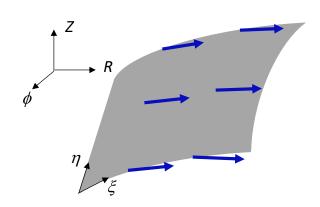
Central-T vs. poloidal resolution with $0 \le n \le 1$ only.

Using magnetic vector-potential can avoid divergence error.

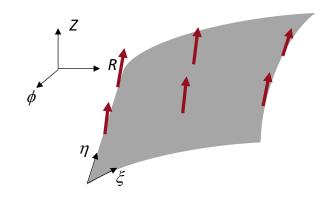
• The Nedelec *H*(curl) elements³ maintain flexibility with respect to polynomial bases.



Standard 2D element.



Linear-quadratic nodal $\sigma(\xi)\lambda(\eta)\nabla\xi$ basis vectors.



Quadratic-linear nodal $\lambda(\xi)\sigma(\eta)\nabla\eta$ basis vectors.

- The third basis vector is $\lambda(\xi)\lambda(\eta)\nabla\zeta$.
- Tangential components are continuous; normal components are not.
- The normal component of their curl is continuous.

³J. C. Nedelec, Numerische Mathematik **35**, 315 (1980).

Differential operators in time-dep. MHD and magnetostatics differ.

- Magnetostatic computations use **A** in H(curl) elements; gauge set with H^1 elements.⁴
 - The double curl leads to a mathematically stable weak formulation.

Linear $V_0=0$, ideal MHD

Magnetostatics

$$\rho_0 \frac{\partial \boldsymbol{v}}{\partial t} = \nabla \cdot (\boldsymbol{B}_0 \nabla \times \boldsymbol{a} + \nabla \times \boldsymbol{a} \boldsymbol{B}_0) - \nabla (\boldsymbol{B}_0 \cdot \nabla \times \boldsymbol{a} + p)$$

$$\frac{\partial p}{\partial t} = -\gamma P_0 \nabla \cdot \boldsymbol{v} - \boldsymbol{v} \cdot \nabla P_0$$

$$\frac{\partial \boldsymbol{a}}{\partial t} = \boldsymbol{v} \times \boldsymbol{B}_0 - \nabla \chi$$

$$\nabla^2 \chi = C \nabla \cdot \boldsymbol{a}$$

$$\nabla \times \frac{1}{\mu} \nabla \times \boldsymbol{a} = \boldsymbol{j}$$
$$\frac{1}{\mu \epsilon^2} \nabla \cdot \epsilon \boldsymbol{a} = \chi$$

The double-curl arises in MHD only with non-zero resistivity.

⁴Y.-L. Li, S. Sun, Q. I. Dai, and W. C. Chew, IEEE Trans. Mag. **51**, 7002306 (2015).

We test different formulations with 1D cylindrical ideal-MHD eigenvalue computations.⁵

- Elements are 1D in r; θ and z are Fourier.
- Formulations with different dependent variables are readily programmed.
- Radial expansions for each dependent variable are set at runtime.
- In cylindrical geometry, 1D H(curl) elements have:
 - Discontinuous expansions for A_r of 1 degree lower than for rA_θ and A_z
 - Continuous expansions of rA_{θ} and A_z of the same degree

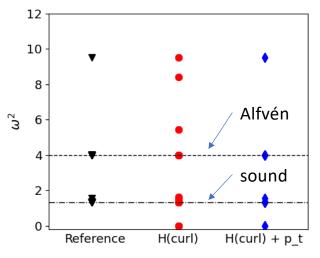
⁵C. R. Sovinec, J. Comput. Phys. **319**, 61 (2016).

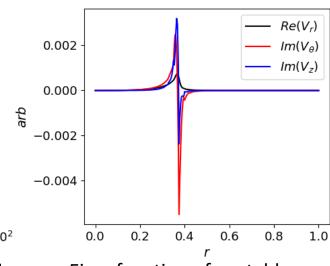
The cylindrical eigenvalue computations support the use of H(curl).

• Results shown here have degree(rA_{θ} , A_z , ϕ) = degree(V, p, A_r)+1.

10-3

10⁻⁵ ·





Eigenvalues for (m=1,k=2) with uniform $\boldsymbol{B}_0 = B_0 \hat{\boldsymbol{z}}$, ρ_0 , and P_0 .

Equilibria with peaked P_0 have bad curvature: k=-1.5->stable; k=-1.78->un.

Eigenfunction of unstable mode is localized.

- The H(curl) computations have
 3 elements in r.
- Convergence is from stable side.
- A in H(curl) without resistivity admits 0-frequency modes.

Other gauge conditions produce more errors.

Previous uses Coulomb via damping:

$$\frac{\partial a}{\partial t} = \mathbf{v} \times \mathbf{B_0} - \nabla \chi$$

$$\nabla^2 \chi = C \nabla \cdot \mathbf{a}$$

$$\frac{\partial \nabla \cdot \mathbf{a}}{\partial t} = \nabla \cdot \mathbf{v} \times \mathbf{B_0} - C \nabla \cdot \mathbf{a}$$

• Alternative 1 uses Weyl:

$$\frac{\partial a}{\partial t} = \boldsymbol{v} \times \boldsymbol{B_0}$$

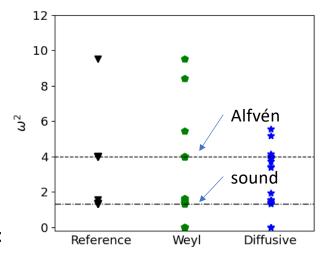
• Alternative 2 uses Coulomb via diffn:

$$\frac{\partial \mathbf{a}}{\partial t} = \mathbf{v} \times \mathbf{B_0} - \nabla \chi$$

$$\chi = C_2 \nabla \cdot \mathbf{a}$$

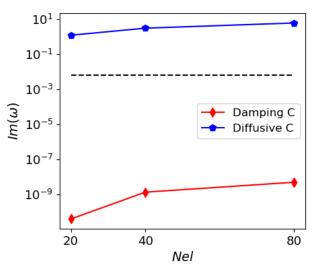
$$\frac{\partial \nabla \cdot \mathbf{a}}{\partial t} = \nabla \cdot \mathbf{v} \times \mathbf{B_0} - \nabla^2 C_2 \nabla \cdot \mathbf{a}$$

• Needs **A** in H^1 .



Eigenvalues for (m=1,k=2) with uniform $\boldsymbol{B}_0 = B_0 \hat{\boldsymbol{z}}$, ρ_0 , and P_0 .

 Weyl has many more 0frequency modes.



The diffusive approach allows the k=-1.5 case (blue) grow faster than the converged k=-1.78 (dashed).

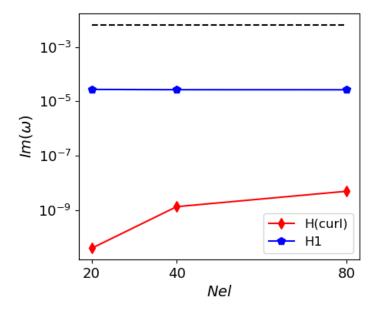
The choice of vector-potential representation affects convergence.

Cases shown here use:

$$\frac{\partial a}{\partial t} = \mathbf{v} \times \mathbf{B_0} - \nabla \chi$$

$$\nabla^2 \chi = C \nabla \cdot \mathbf{a}$$

$$\frac{\partial \nabla \cdot \mathbf{a}}{\partial t} = \nabla \cdot \mathbf{v} \times \mathbf{B_0} - C \nabla \cdot \mathbf{a}$$



Using H^1 instead of H(curl) leads to a weakly unstable mode in physically stable conditions.

Other project aspects are in development.

- Advanced preconditioners for algebraic solves are being investigated.
 - Present NIMROD approach is block-diagonal in Fourier.
 - Extending cyclic reduction to include Fourier coupling is effective.⁶
- Pre-processing of equilibria will accept VMEC output.

Conclusions and Next Steps

- The generalized NIMROD representation will facilitate stellarator applications.
- Divergence-free stellarator-MHD is feasible with A in H(curl).
- Next steps:
 - Implementing H(curl) A-representation in NIMSTELL branch
 - Reading VMEC output for pre-processing

