
Flexible stellarator optimization with Julia

Benjamin Faber

16 October, 2020 1 / 8

Julia for scientific computing

Julia: a new language for scientific computing
https://julialang.org

Why use Julia:
Fast: C/Fortran like performance without the overhead
Dynamically typed: just-in-time compilation for optimized code without type specification
Multiple-dispatch: the same function can act on multiple types, reducing code bloat
Open-source, continually developed, achieving wide use/support within scientific
computing community

Effectively mixes good elements of object-oriented programming with functional
programming and scripting languages
Natively control every aspect of scientific work from Julia: fast linear algebra,
visualization, file management, parallel programming. . .

16 October, 2020 2 / 8

https://julialang.org

Julia for stellarator optimization

Need to support very general objective functions:
Different physics targets can have different requirements⇒ can lead to large overhead
in statically typed languages

Adding a new physics module to STELLOPT is a non-trivial task
Dynamic typing allows for targets to be added/removed on the fly; multiple dispatch
provides concise methods for calling targets:

ModuleTarget <: Abs t rac tTarge t
General r o u t i n e f o r computing o b j e c t i v e f u n c t i o n s
f u n c t i o n computeTarget (t a r g e t : : Abst rac tTarget , kwargs . . .)

. . .
computeTarget (t a r g e t) # Ca l l s module def ined f u n c t i o n
. . .

end
Module def ined r o u t i n e
f u n c t i o n computeTarget (: : ModuleTarget , kwargs . . .)

16 October, 2020 3 / 8

Julia for stellarator optimization

Ease in interfacing with legacy C/Fortran routines
Directly access shared library routines (i.e. VMEC, SPEC)
Significantly cuts down on number of lines of code vs. statically typed language:

C++ VMEC interface: ∼3000 lines of code
Julia VMEC interface: ∼ 800 lines of code

No need for special libraries to access Fortran subroutines, variables
(i.e. f2py, f90wrap)
MPI interface exists to seamlessly pass communicators between routines
Like Python, Julia provides REPL (read-eval-print loop) functionality
Allows for direct manipulation, visualization of underlying data structures⇒ huge
advantage to writing and debugging software

16 October, 2020 4 / 8

Optimization road map

Stellarator optimization road map
Interfaces with equilibrium solves: accomplished for VMEC (VMEC.jl)
General purpose routines for manipulating geometry data: PET.jl (Plasma Equilibrium
Toolkit)

Provide routines for curvilinear coordinate transformations of vector data
Cartesian, cylindrical, PEST, VMEC, Boozer,. . .
Translate geometry data between equilibrium solvers, targets

Write physics targets in Julia
QS, εeff , Γc accomplished so far

Build distributed, scalable infrastructure around pre-built optimization libraries (mango,
Optim.jl): lasso.jl (Lightweight Algorithms for Scalable Stellarator Optimization)

16 October, 2020 5 / 8

Design philosophies

Use libraries whenever possible, the Julia package management system ensures
compatibility
For example, to compute radial dependence of VMEC data, use cubic B-splines from
Interpolations.jl⇒ accurate, fast and memory efficient

Circumvents issues arising in STELLOPT with custom EZSpline library

QuadGK.jl: optimized quadrature library used for accurate adaptive integration
CoordinateTransformations.jl: provides template for extremely efficient coordinate
transformations
Combined, leads to more robust code base

16 October, 2020 6 / 8

Example: VMEC.jl + PET.jl

Define a custom vector type to describe data in 3D space (e.g. ∇ψ)
Translate VMEC Fourier series data to 3D space in different coordinate systems
Compute B(θ, ζ) =

∑
m,n

Bc
mncos(mθ − Nnζ) or construct B = |∇ψ ×∇α|

−5.0 −2.5 0.0 2.5 5.0

1.7

1.8

1.9

2.0

2.1

ζ

B

ATEN Magnetic Field
Fourier Sum
∇ψ ×∇α

16 October, 2020 7 / 8

Example: Γc target

Proxy for evaluating fast particle transport (see Aaron’s work)
Compare geometry elements with ROSE

16 October, 2020 8 / 8

Next steps

Finish mango interface
Perform optimization with VMEC, mango, quasisymmetry and εeff

Contributions are welcome!
https://gitlab.com/wistell

16 October, 2020 9 / 8

https://gitlab.com/wistell

