Flexible stellarator optimization with Julia J

Benjamin Faber

Julia for scientific computing
(]

Julia: a new language for scientific computing ® 0o
https://julialang.org lu I

m Why use Julia:
m Fast: C/Fortran like performance without the overhead
m Dynamically typed: just-in-time compilation for optimized code without type specification
m Multiple-dispatch: the same function can act on multiple types, reducing code bloat
m Open-source, continually developed, achieving wide use/support within scientific
computing community
m Effectively mixes good elements of object-oriented programming with functional
programming and scripting languages
m Natively control every aspect of scientific work from Julia: fast linear algebra,
visualization, file management, parallel programming. ..

https://julialang.org

-
Julia for stellarator optimization

m Need to support very general objective functions:

m Different physics targets can have different requirements = can lead to large overhead
in statically typed languages

B Adding a new physics module to STELLOPT is a non-trivial task

m Dynamic typing allows for targets to be added/removed on the fly; multiple dispatch
provides concise methods for calling targets:

ModuleTarget <: AbstractTarget
General routine for computing objective functions
function computeTarget(target :: AbstractTarget,h kwargs...)

computeTarget(target) # Calls module defined function

end
Module defined routine
function computeTarget (:: ModuleTarget, kwargs...)

] 16 October, 2020

3/8

Julia for stellarator optimization

m Ease in interfacing with legacy C/Fortran routines
m Directly access shared library routines (i.e. VMEC, SPEC)

m Significantly cuts down on number of lines of code vs. statically typed language:

m C++ VMEC interface: ~3000 lines of code
m Julia VMEC interface: ~ 800 lines of code

m No need for special libraries to access Fortran subroutines, variables
(i.e. f2py, f90wrap)

m MPI interface exists to seamlessly pass communicators between routines
m Like Python, Julia provides REPL (read-eval-print loop) functionality

m Allows for direct manipulation, visualization of underlying data structures = huge
advantage to writing and debugging software

] 16 October, 2020

Optimization road map

m Stellarator optimization road map

m Interfaces with equilibrium solves: accomplished for VMEC (VMEC.jl)
m General purpose routines for manipulating geometry data: PET.jl (Plasma Equilibrium
Toolkit)

B Provide routines for curvilinear coordinate transformations of vector data
m Cartesian, cylindrical, PEST, VMEC, Boozer,. ..
m Translate geometry data between equilibrium solvers, targets

m Write physics targets in Julia
B QS, ey, I'. accomplished so far
m Build distributed, scalable infrastructure around pre-built optimization libraries (mango,
Optim.jl): lasso.jl (Lightweight Algorithms for Scalable Stellarator Optimization)

-
Design philosophies

m Use libraries whenever possible, the Julia package management system ensures
compatibility

m For example, to compute radial dependence of VMEC data, use cubic B-splines from
Interpolations.jl = accurate, fast and memory efficient

m Circumvents issues arising in STELLOPT with custom EZSpline library
m QuadGK.jl: optimized quadrature library used for accurate adaptive integration

m CoordinateTransformations.jl: provides template for extremely efficient coordinate
transformations

m Combined, leads to more robust code base

|
Example: VMEC,jl + PET,j

m Define a custom vector type to describe data in 3D space (e.g. V)
m Translate VMEC Fourier series data to 3D space in different coordinate systems
m Compute B(0,¢) = >_ B,,,cos(mf — Nn() or construct B = |V x Va

mn

ATEN Magnetic Field

16 October, 2020

7/8

Example: I'. target

m Proxy for evaluating fast particle transport (see Aaron’s work)

m Compare geometry elements with ROSE

|psi| min
o © © © © o o o
E) w w o o ~ ~ o0
w o w o w o w o

o
e
o

] a | rose
a A wist-julia

10 15 20 25
well number

0.40 1

0.351

le_theta|

0.30 4

0.25 1

A a m rose
A A wist-julia
A
" [] A
[]
L) []
[]
[]
A
A
[]
]
A
A
]
. "
[] A .
[
A
A A A L A
ﬂ ﬂ] A "m : n ‘ A]
L]]
] 5 10 15 20 25
well number

16 October, 2020

8/8

Next steps

m Finish mango interface

m Perform optimization with VMEC, mango, quasisymmetry and e.4
m Contributions are welcome!

B https://gitlab.com/wistell

https://gitlab.com/wistell

