
Comparisons of Stellarator Configurations w.r.t Alpha Confinement

A. Bader with help from M. Drevlak, J.C. Schmitt, M. Landreman, T. Kruger, and others Wistell 2020, Dec 11

Wistell 2020, Dec 11 1 / 21

Alpha particle confinement calculated for many configurations

Wistell 2020, Dec 11 2 / 21

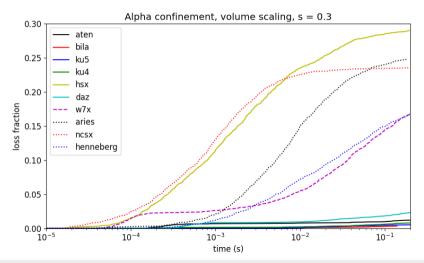
Overview of configurations

Config	Туре	Per.	AR	Beta(%)	a (at 450m ³)	V (at a=1.7 m)
HSX	QH	4	10.0	0	1.3	970
Aten	QH	4	6.7	0	1.5	656
Bila	QH	5	6.6	0	1.5	649
Daz	QH	4	6.8	3.3	1.5	663
Ku4	QH	4	8.1	4.0	1.4	789
Ku5	QH	5	10.0	10.0	1.3	978
NCSX	QA	3	4.4	4.3	1.7	427
ARIES	QA	3	4.5	4.1	1.7	450
Henne.	QA	2	3.4	3.5	1.9	330
W7-X	QO	5	10.5	4.5	1.3	1022

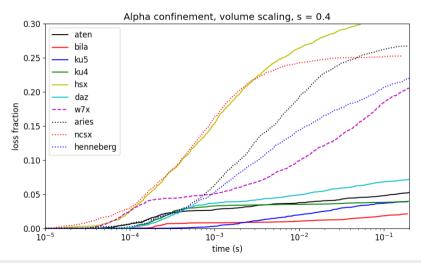
Wistell 2020, Dec 11 3 / 21

Scaling procedures

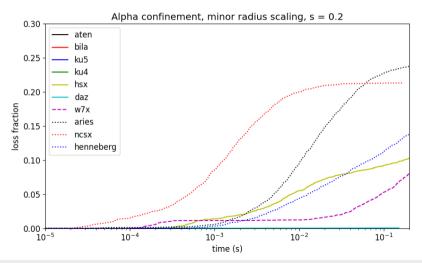
- To make comparisons as close as possible, configurations are scaled to ARIES-CS field (5.7 T) and separately scaled to either match volume (450 m³) or minor radius (1.7 m)
- Plasma pressure, β is held constant, by scaling pressure by B_t^2/B_0^2
- To keep rotational transform profile fixed, plasma current is scaled by $a_t B_t/a_0 B_0$
- All calculations are done using ANTS, collisionless first, then collisional in the second half


Wistell 2020, Dec 11 4 / 21

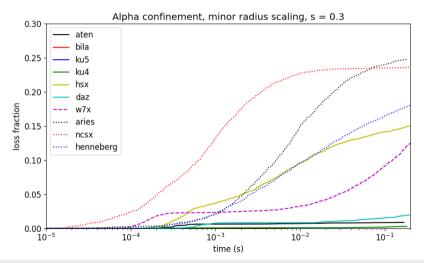
Alpha particle confinement volume scaling, s=0.2


Wistell 2020, Dec 11 5 / 21

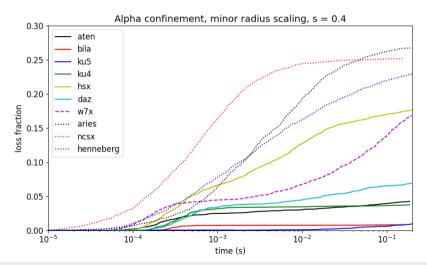
Alpha particle confinement volume scaling, s=0.3


Wistell 2020, Dec 11 6 / 21

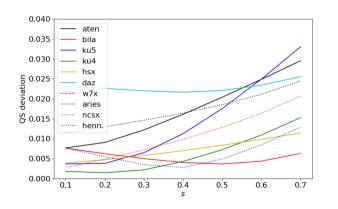
Alpha particle confinement volume scaling, s=0.4

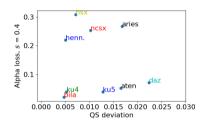

Wistell 2020, Dec 11 7 / 21

Alpha particle confinement minor radius scaling, s=0.2


Wistell 2020, Dec 11 8 / 21

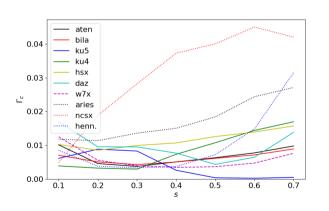
Alpha particle confinement minor radius scaling, s=0.3

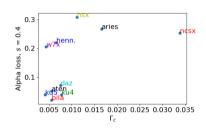

Wistell 2020, Dec 11 9 / 21


Alpha particle confinement minor radius scaling, s=0.4

Wistell 2020, Dec 11 10 / 21

Configuration comparison: quasi-symmetry

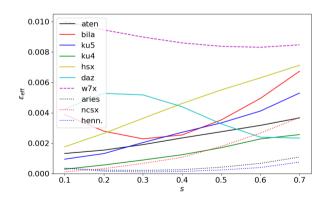


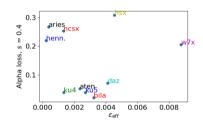


 Correlation exists between QS and alpha losses for QH and QA separately

Wistell 2020, Dec 11 11 / 21

Configuration comparison: Γ_c

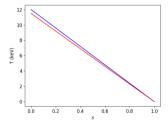


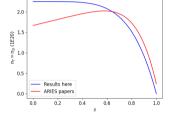


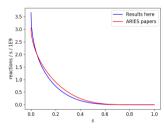
- Correlation less strong for Γ_c
- Neither metric properly captures coil ripple effects (HSX outlier)

Wistell 2020, Dec 11 12 / 21

Configuration comparison: $\epsilon_{\rm eff}$






• Almost no correlation for ϵ_{eff}

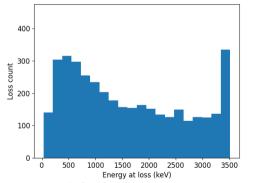
Wistell 2020, Dec 11 13 / 21

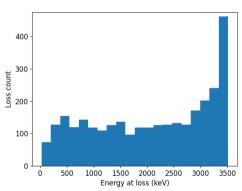
Setting up collisional profiles for ANTS

- Density profile $n = n_0(1 s^5)$; Temperature $T = T_0(1 s)$
- Density profile is flat, but monotonically decreasing, in contrast to the hollow ARIES profile. Reactivity is thus slightly more peaked
- Reactivity profile prescribes ANTS particle sourcing in the radial direction

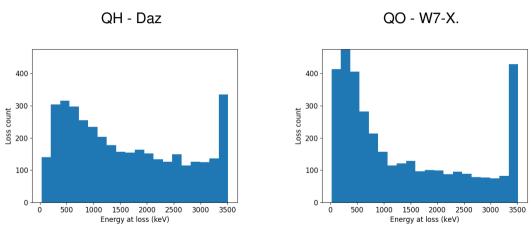
Wistell 2020, Dec 11 14/21

Main collisional results




Wistell 2020, Dec 11 15 / 21

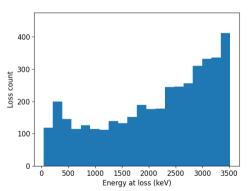
Energy distribution losses also favor QH



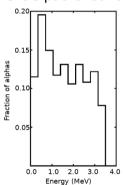
- In all QHS configs, the losses are skewed towards low energy particles
- QA usually has a flat distribution

Wistell 2020, Dec 11 16 / 21

w7X performs on par with some QH stellarators

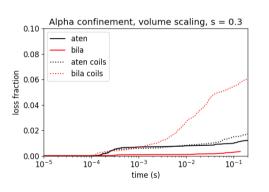


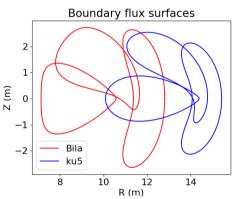
In W7-X losses are also heavily skewed towards lower energy particles


Wistell 2020, Dec 11 17 / 21

w7X performs on par with some QH stellarators

ARIES-CS - ANTS

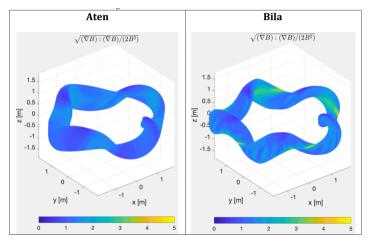

ARIES-CS published results



 Published ARIES-CS results claimed lower losses (5%) and a different loss distribution than calculated with ANTS

Wistell 2020, Dec 11 18 / 21

Best QH configs appear difficult to produce with coils



 Indentation in teardrop shape is a major problem area for coil generation codes

Wistell 2020, Dec 11 19 / 21

New metric may help indicate problem configs

Metric and picture courtesy of Matt Landreman

Wistell 2020, Dec 11 20 / 21

Conclusions and thoughts

- QH appears to regularly outperform QA
 - QH configs have higher aspect ratio. Will QA performance increase at high AR?
 - The best QH configs have difficult/impossible coils. The 2nd tier (ATEN/Daz) are doable
 - Does Γ_c really matter for QA? Is it possible to improve on Henneberg's QA?
- W7-X performs better when collisions are included compared to QH or QA
 - How well would optimized QIs and QPs perform, even ones with impossible coils.
 - Is Γ_c useful for QI, if not, what metric should truly be focused on? Maximum-J? Something else?

Wistell 2020, Dec 11 21 / 21