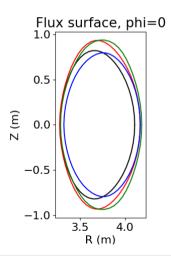
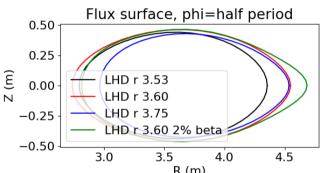

Alpha confinement in LHD-like equilibria

A. Bader, Y. Suzuki, M. Drevlak Wistell 2021, Feb 17

Wistell 2021, Feb 17 1 / 10

Alpha particle confinement in LHD-like configurations


Inward shifted configurations from Mynick Phys. of Fluids 1983

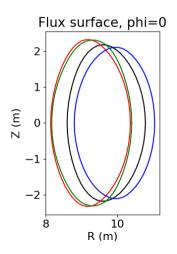

Despite several caveats to the fidelity of the calculation LHD-like configurations show some expected trends

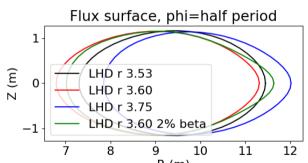
- Inward shifted configurations outperform outward shifted configurations significantly (and even some optimized configurations!)
- Confinement degrades with inclusion of plasma pressure

Wistell 2021, Feb 17 2 / 10

Unscaled (starting) LHD equilibria

- Deviations of finite beta most visible at half period plane
- *r*=3.60 case has largest minor radius

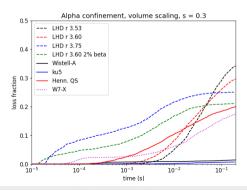

Wistell 2021, Feb 17 3 / 10


General overview of scaling configurations

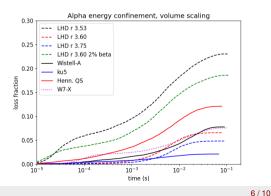
- Choose scaling parameter: volume or minor radius
- Choose scaling parameter: B0 or volume averaged B
- Fixed-boundary
 - Scale boundary coefficients, plasma pressure, and toroidal currents
 - Plasma pressure, β is held constant, by scaling pressure by B_t^2/B_0^2
 - To keep rotational transform profile fixed, plasma current is scaled by a_tB_t/a_0B_0
- Free-boundary
 - Scale everything as above, and...
 - Scale coil file/mgrid
- With coils it is also possible to do vacuum simulations with the direct field

Wistell 2021, Feb 17 4 / 10

Scaled LHD equilibria

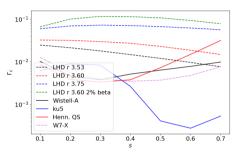


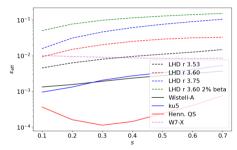
• Volume scaling: $r=3.60 \stackrel{\text{R}}{\text{configuration}}$ has smallest aspect ratio giving it the lowest minor radius


Wistell 2021, Feb 17 5 / 10

In collisional calculations, LHD vacuum configurations outperform some optimized stellarators

Collisionless

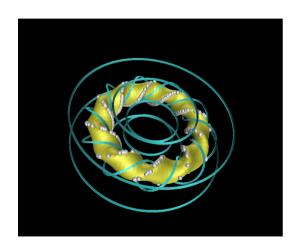



Collisional

Wistell 2021, Feb 17

Metrics do not seem to predict LHD performance well

- Relative to other LHD configurations, the metrics have some predictive capability
- Based on Γ_c alone you'd expect LHD vacuum configurations to perform worse than they do


Wistell 2021, Feb 17 7 / 10

Methodology used for other equilibria may be less well suited to these LHD-like configurations

- Results may overestimate LHD losses because
 - Do not account for particles that leave and re-enter the equilibrium
 - Stochastic LHD edge can provide some confinement
- Results may underestimate LHD losses because
 - VMEC makes good flux surface where stochasticity is expected

Wistell 2021, Feb 17 8 / 10

Losses localized on helical stripes

- Configurations using helical coils have strong preference for specific exit locations
- Similar to non-resonant divertors Picture courtesy of M. Drevlak

Wistell 2021, Feb 17 9 / 10

Next steps

- Calculation of vacuum field directly from coils (working on at present)
- Include wall, use vacuum fields, and test the amount of re-entering particles
- Can possibly consider more realisitic (i.e. non-VMEC) equilibria

Wistell 2021, Feb 17 10 / 10