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Goal

Energetic ions are lost via neoclassical
mechanisms in stellarators. Two basic time
scales:

B Prompt losses.
B Stochastic losses.

Prompt losses correspond to energetic ions
of higher kinetic energy:

B Deleterious effect.

B Modelling can be collisionless, limited to
trapped ions and without E;.

0.3 F

o

loss fraction

=

0 . .
107 10~ 107 1072 107!

t[s

(In all this work: collisionless simulations with
ASCOT, 50 keV ions mimicking « distribution).

Goal of this work: develop a fast model for the evaluation of prompt losses of
energetic ions in stellarators (paper to be submitted).

B Useful for optimization and characterization of parameter space, but also for

understanding key features.

Long term goal: fast and accurate simulations of energetic ions (in preparation, final

slides).
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Notation
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B Spatial coordinates: normalized toroidal flux
(s =W/, cums), field label (o =0 — «() and arc _
length (/). %

B Velocity coordinates: velocity (v) and pitch angle
(A = 2u/v?). Constants of motion.
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For trapped particles:
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(f(s, e, 1, A, v) is an arbitrary function).
B |0.J/0sJ| small: poloidal precession on the flux-surface.
B |0aJ/0sJ| large: large radial excursions, superbanana orbits.

Energetic ions move in (s, «) space at constant J.
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Energetic ion confinement and contours of J
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B For W7-X (KJM configuration), when § increases, J— contours tend to be aligned to
s—contours and J tends to be monotonically decreasing with s: maximum-J property

[Helander, PoP (2013)].

B Configurations satisfying exactly the maximum—J condition have no superbananas,

because 0sJ does not vanish.
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Radially local description of J-maps: why?

B Radially global description requires a radially global code:

>
>

Does not exist, except for guiding-center MC codes (but see final slides!).

Additional radial variable = higher computing cost.

B Stellarator optimization tends to use radially local approach:

>
>

Targets, proxies... evaluated at discrete flux-surfaces.

Theory predicts that perfect optimization (w.r.t some criteria) cannot be
achieved in the full volume ([Garren and Boozer, PoF (1991)] in the case of
quasisymmetry).

Optimizing a single flux-surface can be successful strategy [Henneberg, NF
(2019)]

Specific of energetic ions: perfectly optimized flux surface s = sy confines all
energetic ions born at s < sp.
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Radially local description of J-maps:

Ye(a, A) at s = 0.25
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B +} = 0 where s-contours and J-contous are well aligned.
B~ = 41 where s-contours and J-contous are orthogonal.

» ¥ = +1 when vy, - Vs is directed outwards.
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Interpretation of -} maps
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B When S increases, superbananas move to larger values of \.

B Globally, the weight of the superbananas (area of the red and blue region in 75 map)

is reduced.

B ASCOT simulations confirm improvement of energetic ion loss fraction.

» Can we use these maps to perform predictions?
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Qualitative validation of 4 maps with ASCOT calculations

loss fraction
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When [ increases, superbananas move to larger values of \.

Globally, the weight of the superbananas (area of the red and blue region in 7; map)
is reduced.

ASCOT simulations confirm improvement of energetic ion loss fraction.

» Can we use these maps to perform predictions?
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The [, proxy
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Proxy I [Nemov, PoP (2008)] is roughly an integral of (v7)2.

B Measure of separation of J-contours from s-contours.

B Reduction of I'c typically correlates with improvement of energetic ion confinement.
B Employed succesfully in optimization of QHS [Bader, JPP (2019)].

» Can we go beyond this qualitative assesment?
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First approximation to modelling the fraction

A[1/T)

of losses
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M-extension of red region should be greater concern than a-extension.
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First approximation to modelling the fraction of losses
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B lons move at constant .

B )-extension of red region should be greater concern than a-extension.

B Possible model: all ions born with A where a superbanana exists are lost.
» More precisely: orbit is unconfined if max(ya (a|A)) > e

» We choose ;1 = 0.2, corresponding approximately to \:’A";’gi

1 g7 B .
Ms = 5 < - d)\ﬁH(max(% (a|N)) = ’Yth)>
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A (small) step beyond the local approach

0.47

0.38 05

A[L/T)
1
N

0.35 -

0 1
o/ (2r)

lons at s = sy (dashed green) precess in « at constant J (thick black).
B Some ions reach a &~ aout, where v; &~ 1, and escape.
B Others are tied to sp (inwards excursion around «in, where 77 ~ —1).

B Estimated fraction of prompt losses (0 < oy < firapped):
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A (small) step beyond the local approach
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lons at s = sy (dashed green) precess in « at constant J (thick black).

B Some ions reach a & @out, where 75 = 1, and escape.
B Others are tied to sy (inwards excursion around ain, where 77 ~ —1).

B Estimated fraction of prompt losses (0 < I'a < firapped):

g1
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Model validation with ASCOT

prompt losses

- time scale and total
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Model (squares) captures well several features of the ASCOT simulations (lines):

1
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10-1

(1= s0)/var-Vs [s]

B (1—s0)/vm - Vs evaluated around aous gives the right time scale: 107%s< t < 107 3s.

B Value of total prompt losses at t approximately 107 3s.

B Positive effect of 3, even jump between 2% and 3 %.
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Model validation with ASCOT
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Model validation with ASCOT: velocity distribution
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Model captures well several features:

B For 8 < 3%, particles with all velocities are expected to be lost.
B At 8 = 3%, some ions with A =~ 0.41/T become confined.

B For 8 > 3%, a larger range of \ has good confinement.
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Model validation: overall configuration performance

Encapsulate performance on a single number (per flux-surface)
= can be employed in a stellarator suite such as STELLOPT.

Two variations w.r.t. Nemov's I¢:
B— 1
Fo=1 A (0 ) = ST
2 I\/IAX 2\/5

. 1< B!
rC = d /7|’7c|
2 MAX

Existence of superbananas:
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Our final model:
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Model validation: overall configuration performance

B Repeat the calculation for main configurations of the OP1.2 campaign: KJM (incl. 8
scan), EIM, DBM, FTM.

B Compare:

» Fraction of prompt losses for ions born at s = 0.06 calculated with
ASCOT (y axis)
> Model prediction at s = 0.06 (x axis).

T. e
= I
£
B [, consistently outperforms other = 03
proxies (closer to diagonal). 7;
B [, good quantity for stellarator g e %
optimization. % ; ® o
B Optimization of just outer surface i " : "“
could be a good idea. =
l]O Oil 0‘,2 []‘.3 0.4

T, T, Ts, T (5 = 0.06)
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Model validation: overall configuration performance

B Repeat the calculation for main configurations of the OP1.2 campaign: KJM (incl. 8
scan), EIM, DBM, FTM.

B Compare

» Fraction of prompt losses for ions born at s = 0.25 calculated with
ASCOT (y axis)
> Model prediction at s = 0.25 (x axis).
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Model validation: overall configuration performance

B Repeat the calculation for main configurations of the OP1.2 campaign: KJM (incl. 8
scan), EIM, DBM, FTM.

B Compare

» Fraction of prompt losses for ions born at s = 0.50 calculated with
ASCOT (y axis)
> Model prediction at s = 0.50 (x axis).
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Model validation: overall configuration performance
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Model validation: overall configuration performance

B Repeat the calculation for main configurations of the OP1.2 campaign: KJM (incl. 8

scan), EIM, DBM, FTM.

B Compare

» Fraction of prompt losses for ions born

ASCOT (y axis)

> Model prediction at s = 0.50 (x axis).

B [, consistently outperforms other
proxies (closer to diagonal).

B [, good quantity for stellarator

optimization.

B Optimization of just outer surface

could be a good idea.
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Model validation: overall configuration performance

B Repeat the calculation for main configurations of the OP1.2 campaign: KJM (incl. 8
scan), EIM, DBM, FTM.

B Compare

» Fraction of prompt losses for ions born at s = 0.25 calculated with
ASCOT (y axis)
> Model prediction at s = 0.50 (x axis).

T. e
= L.
=} rs e
) Toa ®
B I, consistently outperforms other - 03
proxies (closer to diagonal). 7
. I .2
B T, good quantity for stellarator = ' e Ve . .
.. . ] 0, ©® °
optimization. b . Voe | ;
o ) 01l e e ® °
B Optimization of just outer surface 3
could be a good idea. =
UO 0.1 0.2 0.3 0.4

e, T, Tj, Ty (s = 0.50)

Velasco et al. (CIEMAT) Fast modelling of energetic ion NC losses 13 / 16



Conclusions

We have developed a model that classifies orbits and succeeds in predicting

configuration-dependent aspects of the prompt losses of energetic ions in stellarators.
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Calculation takes a few seconds on a single
computer, useful for:

0.2

0.06,t =10"%s)

B Stellarator optimization.

AN
0.1
B Parameter scans.

Jioss,t(s0

Next steps:

T, (s = 0.06)

ASCOT (sp = 0.06) —e—

B Should work for other types of stellarators.
B Possible extensions of the model: E,, pitch-angle collisions, v-diffusion.

B Losses at longer t, associated to stochastic diffusion (but many more subtleties).

But is is clear that quantitatively correct prediction requires a radially global code.

B Many features of a particle trajectory are not determined by its initial point in phase

space (s, a, I, A, v) but specifically by the initial trapped-orbit in which it

lies,

(s, @, A, v) = keep on using guiding-center codes but with a more efficient initial

distribution of markers?
But...
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Conclusions and ongoing work

Important theoretical result: bounce-averaged drift-kinetic equations are probably able
to describe quantitatively neoclassical fast ion confinement. Need to be radially global.

B If the motion along the field line does not need to be resolved, equation could be
solved much faster.

B We are extending (local) code KNOSOS to solve rigorously the radially global
bounce-averaged drift kinetic equation (i.e., the bounce-averaged version of the
equation solved by ASCOT):

OiF + 0 JOF — 05 J0aF = C(F)+ S

KNOSOS = GNOSOS: Global kiNetic Orbit-averaging SOlver for Stellarators
(* provisional name)

This can e.g. be solved by a Monte Carlo method that integrates

. —_— m

s = vy-Vs= ZeU.r, )

. — m

(0% = Vm- Va = —mas./
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Conclusions and ongoing work (11)

loss fraction

Working on the longer time scale:

B Stochastic losses have to do with diffusion caused by back and forth transition
between trapped states.

» Transition probabilities need to be calculated accurately.
» Bounce-averages may need extra accuracy.

B Collision operator different than that of bulk species.
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