Julia stability calculations from CobraVmec

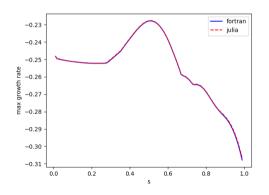
A. Bader, B. Faber, S. Patil Wistell Meeting 18 March

Wistell Meeting 18 March 1/6

Conversion of CobraVmec into a Julia Ballooning calculation suitable for optimization

- Step 1: convert Fortran to Julia directly (done by S. Patil)
- Step 2: Replace all finite derivatives with spline functions from PlasmaEquilibriumToolkit
- Step 3: Replace Richardson scheme to find eigenvalues with canned Julia eigenvalue solver
 - We are currently here, between Step 3 and 4
- Step 4: Replace ballooning P,Q, and R with direct calculations

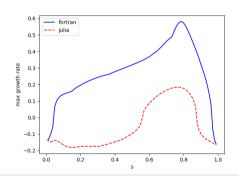
CobraVmec i/o

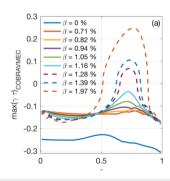

Inputs

- Surfaces to calculate quantities on (s in Julia, surface index in fortran)
- Field lines to consider (given as θ and ζ values)
- Distance along field line to travel (given as number of wells)

Output

- Maximum growth rate for each (s, θ, ζ) point
- Other diagnostic info


Near exact agreement between CobraVmec and Julia for zero beta case



- Calculations are from exact same field lines and follow the exact same distance
- Quantities and derivatives come from spline fits
- Eigenvalue solver is a partial schur decomposition using the ArnoldiMethod package

Bug discovered in CobraVmec hampers further comparisons

- Current version of CobraVmec calculates components of B field assuming same spectral resolution as for spatial components (i.e. mn = mn_nyq)
- The bug has been brought to the attention of STELLOPT maintainers and developers

Wistell Meeting 18 March

Implementing direct P, Q, R calculation

$$P(\theta) = \frac{1}{\sqrt{g}} \frac{1 + \Lambda^2}{|\nabla \psi|^2}; \ Q(\theta) = \beta' \sqrt{g} \frac{(\kappa_n + \Lambda \kappa_g)}{|\nabla \psi|}; \ R(\theta) \sqrt{g} \frac{1 + \Lambda^2}{|\nabla \psi|^2}$$
$$\Lambda = -\frac{|\nabla \psi|^2}{B} \left(\Theta^{\alpha} + q'\theta_k\right)$$
$$\Theta^{\alpha} = \frac{\nabla \psi \cdot \nabla \alpha}{\nabla \psi \cdot \nabla \psi}; \ \theta_k = \iota' \frac{k_{\psi}}{k_{\alpha}}$$

- θ_k selects a given field line, plan to use that as input instead of θ and ζ
- Implementation and matrix construction in process

Wistell Meeting 18 March

6/6